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Abstract 
 
The use of big data and machine learning techniques is now very common in many spheres and 
there is growing popularity of these approaches in macroeconomic forecasting as well. Is big 
data and machine learning really useful in the prediction of macroeconomic outcomes? Are 
they superior in performance compared to their traditional counterparts? What are the trade-
offs that forecasters need to keep in mind, and what are the steps they need to take to use these 
resources effectively? We carry out a critical analysis of the existing literature in order to 
answer these questions. Our analysis suggests that the answer to most of these questions are 
nuanced, conditional on a number of factors identified in the study.   
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1. Introduction 

Timely forecasts of key macroeconomic indicators, such as GDP growth and inflation, are 

important for policymakers and market participants to gauge the health of the economy, form 

expectations about the future and calibrate their actions. A central bank’s decision on whether 

to increase or decrease the monetary policy rate, a government’s expectations about the tax 

revenue it may obtain over the coming year, and decisions regarding investments - all require 

forming expectations about the inflation or GDP growth in a country, which rest on a 

foundation of good forecasts.  

In recent times, the use of big data and machine learning (to be used interchangeably with the 

term ML in some places in this paper) techniques are increasingly gaining popularity in various 

spheres4. A limited but growing literature is also emerging that uses these new approaches for 

macroeconomic forecasts. While most of the research in this field is conducted in the U.S and 

other developed countries' central banks, work has been undertaken recently in developing 

countries as well. However, a broad-based understanding about these approaches is yet to 

emerge. In this paper, we attempt to contribute to a better understanding of these issues by 

undertaking a critical review of the relevant literature.   

What is big data and machine learning? As far as big data is concerned, there exists no single 

definition, with different studies emphasising different characteristics (Doornik and Hendry, 

2015; IBM). However, it is best understood by drawing a distinction between ‘designed’ and 

‘organic’ data (Rigobon, 2018). Designed data refers to surveys and administrative records: 

instruments that are specifically designed to capture information about an entity or a group of 

entities. Data on vehicular and industrial production, tax records, census information, labour 

surveys –– all refer to designed data. Organic data on the other hand “...is the data that is 

generated by individuals without them noticing they are being surveyed. It is the data in the 

GPS of your phone, your searches on the web, the friends in your network, the things you 

purchase, etc. Every time any individual acts through any of these channels it provides 

information about herself “ (Rigobon, 2018).   

For example, typing a search query in Google and swiping a credit card can provide the owner 

of that data information about your consumption preferences. These preferences can be 

                                                
4 Chakraborty and Joseph (2017), for example, provide a review of ML methods and their applicability 
in financial and economic contexts. 
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aggregated, categorised, and made amenable to statistical analysis. Since this data is a by-

product of an electronic transaction or activity, it is generated at a much higher frequency (or 

‘Velocity’) than designed data, and is typically orders of magnitude bigger in terms of size, 

requiring special storage and processing tools. It can thus be described as high in ‘Volume’. 

Organic data is generated from a multitude of sources, like internet searches, credit card 

purchases, mobile phone data, GPS systems and so on. Such data, therefore, has high ‘Variety’. 

However, not all aspects of an organic data source may be useful for a given purpose: say, 

macroeconomic prediction. The greater the share of useful observations, or signals, in an 

organic data source, the higher its ‘Veracity’, and vice-versa. Together, Velocity, Volume, 

Variety and Veracity are termed the four “Vs” that distinguish big data from its ‘smaller’ 

counterparts (IBM). It can therefore step in and complement more traditional, designed sources 

of data when the latter are unavailable or delayed. These characteristics are particularly useful 

in carrying out macroeconomic ‘nowcasts’, which are an increasingly popular subset of 

forecasts that involves making predictions at higher-than-monthly frequencies.  

Machine learning, on the other hand, is more well-defined. Very simply, it is the “study of 

computer algorithms that improve automatically through experience” (Mitchell, 1997). 

Statistical techniques for predicting a target variable, such as GDP growth or inflation, fall 

within the domain of “supervised learning”. This domain of statistics is primarily concerned 

with relating observations of a set of inputs or predictor variables represented by X, to a 

supervising output/response/target variable Y, through a function f –– with some associated 

error 𝜺 (James et. al., 2013) :  

 

𝑌 = 	𝑓(𝑋)	+	𝜺                                              

 

The function 𝑓 determines how 𝑋 and 𝑌are related. This relationship can take many shapes –– 

linear or non-linear –– and is used to predict future values of 𝑌, for each given value of 𝑋. For 

instance, if past values of GDP or inflation (𝑋) predict their future values (𝑌) reasonably well 

and are related through a linear function 𝑓, then using the same function, we can predict 𝑌 as 

more data on 𝑋 becomes available. As Jung et. al. (2018) note, machine learning methods do 

not make assumptions about the functional form of 𝑓. Macroeconomic predictions using such 

methods are thus dependent on first estimating the shape or the ‘fit’ of the function 𝑓, i.e. how 
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does it relate 𝑋 and 𝑌(on ‘training’ or in-sample data), and checking whether this function does 

a good job of relating 𝑋and 𝑌in the presence of previously-unseen data (‘test’ or out-of-sample 

data).  

Technically, both non-ML (regressions, for example) and ML techniques involved in 

macroeconomic predictions fall within the domain of supervised statistical learning. What 

makes ML techniques more attractive relative to their econometric or non-ML counterparts is 

their ability to more efficiently handle datasets with Velocity, Volume and Variety that is orders 

of magnitude higher than designed datasets. This can be particularly useful in economic 

contexts where structured data and surveys are either infrequent or do not exist, for example in 

a Least Developed Country (LDC) with a low-capacity statistical apparatus.  

In this paper, we attempt to investigate whether the existing literature on macroeconomic 

forecasting has been able to establish any advantages of using big data and machine learning 

approaches over more traditional alternatives. In the case of big data, this is done through an 

analytical survey of the literature. In case of machine learning, we conduct a meta-analysis of 

the literature on forecasting GDP growth and inflation using ML techniques. The aim is to 

understand whether ML techniques are better than their ‘standard’ or non-ML counterparts in 

providing more accurate forecasts. To the best of our knowledge, such a meta-analysis is an 

original contribution to the literature. Finally, based on our understanding of the strengths and 

limitations of these new approaches, we attempt to provide guidance on how to use them for 

macroeconomic forecasting.   

The structure of the paper is as follows. Section 2 deals with the advantages and limitations of 

using big data for macroeconomic forecasting, relative to traditional data. Section 3 provides 

an introductory review of the ML techniques most commonly used in the existing literature. 

Section 4 describes the dataset constructed for our meta-analysis and discusses the empirical 

results of the analysis. A guide for using big data and ML techniques for macroeconomic 

forecasting is provided in Section 5. Section 6 concludes.  

2. Use of big data for macroeconomic forecasting: advantages and limitations 

Regular or ‘designed’ data that is used in macroeconomic predictions, especially of GDP 

growth, comes with certain limitations. Among these, non-synchronous and lagged data 

releases are particularly important. The former refers to the different release schedules of 

different indicators. In India, for instance, hard data on monthly production of commercial 
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vehicles is released in the middle of the month, whereas data on monthly production of coal 

and crude oil is released early in the month. Similarly, data for an indicator for a given month 

may be released next month with a lag, as is the case with data on steel and fertiliser production. 

Together, non-synchronous and lagged data releases lead to a ‘jagged-panel’ of data or ‘jagged-

edge’ data (Bhadury et al., 2018). This implies that at the time of making a (typically, quarterly) 

forecast, the forecaster will not have all the data available for all the relevant indicators, with 

respect to the quarter in question. 

Issues with standard data used for inflation forecasts are slightly different, as price data that is 

part of the Consumer Price Index (CPI) and its variants are all released at the same time on a 

monthly basis. Lags and non-synchronicity in such data releases, therefore, do not exist. 

However, non-price variables that go into inflation forecasts such as liquidity, industrial 

measures, net exports and extraneous environmental measures like rainfall and crop yields, can 

be non-synchronous and lagged, leading to the aforementioned ‘jagged edge’ problems in 

inflation forecasting as well. 

Different techniques such as Bridge Equation frameworks and Kalman Filter algorithms (used 

in Dynamic Factor Models) or Multiple Imputations as a form of stochastic iterations (Rubin, 

1977) attempt to deal with the problem of jagged-edge data in different ways. Nonetheless, a 

key issue that a jagged-panel creates is to limit the information available to the forecaster at the 

time of the forecast.  In other words, with regular ordered data being used from a multitude of 

sources, non-synchronicity and delays are inevitable. The use of big data is very effective in 

this context. It can help in plugging the data gaps created by these problems, along with 

possibly increasing the accuracy of the macroeconomic predictions being made.  

How exactly does big data help? This question can be answered in terms of the four “Vs” 

discussed earlier. Since big data is organic and a by-product of everyday activities, the higher 

Velocity of its generation allows it to step in where there are issues of delays or non-

synchronicity with smaller, designed data. ‘Google Trends’, a service offered by Google is a 

popular source of such high-velocity data. It shows a time series of the frequency with which 

a particular keyword was searched on Google, relative to all searches. The user can specify the 

geographical region and language for this exercise. Buono et. al. (2017)  provide a good 

overview of the studies utilising Google Trends for predictive purposes in varied fields such as 

economics, finance, health and politics, among others. Woloszko (2020) constructs a weekly 

tracker of GDP growth forecasts for 46 countries from both the OECD and G20 blocs, covering 
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a wide range of economies. On average, his model utilising Google Trends performs well on a 

weekly basis. However, it does not outperform models that use more ‘standard indicators’, 

once they are released. Nevertheless, obtaining reasonably accurate estimates of GDP growth 

at a higher-than-quarterly frequency may be very useful from a policy perspective. Similarly, 

using satellite data on nightlights allows Bhadury et. al. (2018) to predict GDP growth estimates 

before all the standard high-frequency indicators become available, illustrating the utility of 

incorporating big data in macroeconomic forecasts.  

Besides high Velocity, the higher Variety of big data allows the incorporation of information 

that may not be captured in standard datasets, potentially offsetting measurement biases. Take, 

for instance, scanner and online prices. Scanner price data refers to the information encoded in 

the bar codes of retail products that is generated when the barcode is scanned. This information 

can be utilised to create baskets of prices. With the increased popularity of online shopping, 

prices collected over the internet can also help construct such price baskets. Changes in the 

price data collected can be used to measure or predict inflation (while keeping in mind 

competitive and retail market behaviours online and how it affects pricing).  

Besides the obvious advantage of high Velocity, price data collected from these sources can 

improve upon the coverage and accuracy of the surveys traditionally used to collect such data. 

For example, scanner data, by virtue of being ‘organic’, can provide a wider geographical 

coverage while collecting prices since it is more labour intensive to expand the reach of 

traditional surveys. Scanner data can also offer a more granular insight into price changes for 

different products (Buono et. al., 2017). Additionally, online prices can more accurately 

account for prices of products that are bought relatively more frequently online, such as 

smartphones and other consumer electronics (Rigobon, 2018). The utility of these sources of 

price data is well-established by now. ‘The Billion Prices Project’, started in 2008, collects 

daily price data from online retailers around the world and computes alternative measurements 

of inflation. It is one of the most well-known examples of using such data to measure and 

predict inflation. The official statistical agencies of New Zealand and Netherlands are at 

different stages of formally utilising scanner price data to measure price inflation (Buono et. 

al., 2017).  

While sources of big data may serve as reliable, high-frequency proxies of indicators that help 

predict macroeconomic series like GDP growth and inflation, it is useful to keep their potential 

limitations in mind. The biggest limitation of big data is that it is not (yet) a representative 
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sample of different types or different parts of economies (Rigobon, 2018; Buono et. al., 2017). 

To illustrate, the intuition behind using Google Trends to predict unemployment is that 

individuals are likely to search for jobs online if they have been laid off. A high volume of such 

searches would show up in Google Trends and could indicate the early stages of a recession. 

However, the implicit assumption here is that the search data is capturing a representative 

sample of the geography in question. People are more likely to utilise the internet to search for 

jobs in developed economies and there may be a selection bias within such countries too. A 

younger, more educated demographic in urban areas, for instance, may be more likely to search 

for jobs using the internet as opposed to their lesser educated peers in rural areas.  

Similarly, using scanner and online prices to construct price indices is likely to capture the 

consumption baskets of those who have a certain level of purchasing power, financial literacy, 

and access to the internet. Existing price collection methods for CPI take care to judiciously 

survey ‘Working-Class’ markets and ‘Middle-Class’ households. Complex stratification 

ensures that a representative sample is selected, making it more statistically driven than big 

data’s ‘behaviour driven’ approach. The latter approach is much more likely to be biased 

towards those households, individuals and products which constitute the digital markets.   

This ‘digital divide’ and how it creates sampling biases across and within economies must be 

kept in mind (Buono et. al., 2017) while using big data. The existence of a digital divide does 

not mean, however, that such data is not useful for macroeconomic forecasting in, say, a 

developing economy. As discussed earlier, big data can be useful for filling-in missing data 

and providing proxies for lower frequency or unattainable data. The user, however, must be 

conscious of the nature of its sampling bias and use it to complement, rather than substitute 

‘smaller’, designed data. “big data hubris”, therefore, must be avoided (Lazer et. al., 2014).  

Another limitation of big data arises due to the fact that most of it is generally proprietary and 

made available to the public, licensee or official statistical agency after some pre-treatment 

and/or aggregation. Lack of knowledge about the pre-treatment of the raw data, along with a 

lack of access to the same, introduces some opacity about the measurement quality of the data 

(Kapetanios and Papailias, 2018). Moreover, when data is proprietary, the nature of access may 

also change over time. Google Trends may stop being available as a free service or may be 

stopped entirely. Retailers may forbid web scraping algorithms from compiling prices over the 

internet. Relatedly, the nature of measurement may also change over time. Google keeps 

tinkering with its search algorithm in order to provide better search results and user experience. 
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These ‘algorithm dynamics’ may affect the search queries that end up being correlated with an 

event or series of interest. Algorithm dynamics may also be differentiated along axes of 

geography, showing different search results and query-prompts to individuals in different 

locations. Change in the nature of access and measurement can disrupt the forecaster’s ability 

to use a big data source and to make accurate predictions (Buono et. al., 2017; Kapetanios and 

Papailias, 2018; Lazer et. al., 2014). 

Finally, since the start date of many big data sources is relatively recent, the temporal 

dimension of the source may be limited for robust parameter estimations and out-of-sample 

evaluations. This issue is compounded by the fact that the reference series –– inflation or GDP 

growth –– are usually of a lower frequency (quarterly or annual) than the big data source. Thus, 

the latter will have to be aggregated to match the frequency of the target variable: offsetting 

the gains that may have been derived from the higher frequency and volume of the big data 

being used (Buono et. al., 2017).  

3. Machine learning techniques 

ML methods most commonly used in the literature on forecasting growth and inflation can be 

broadly divided into 3 types: Penalisation, Tree-based and Neural Networks. We introduce and 

describe each of these types below.  

3. 1 Penalisation 

Parameter estimation used in most standard linear prediction methods follows the Ordinary 

Least Squares (OLS) procedure. Take a standard linear regression as an example:  

𝑦	+ = β, +	∑ 𝛽/𝑥+/
1
/23   

Estimating 𝛽 using OLS requires minimising the sum of squared residuals (henceforth RSS):  

𝑅𝑆𝑆	 = 	6(𝑦+ 	−	𝛽, 	−	6𝛽/𝑥+/

1

/23

)8
9

+23

 

 

This estimation works well in many situations. However, if the number of predictors is close 

to, or greater than, the number of observations, then estimation via OLS can lead to overfitting, 

wherein the estimated parameters have low bias but high variance. This means that they might 
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fit the relationship between the predictors and the response variable closely in the available 

sample (low bias), but are sensitive and prone to vary with the introduction of new observations 

–– they will perform well in-sample but not out-of-sample (high variance), which is not good 

for a forecasting model.  

However, with some modifications to the OLS procedure, some bias in parameter estimation 

can be introduced in order to reduce their variance, thereby improving their predictive 

performance. These modifications are provided by ‘Regularisation’ or ‘Shrinking’ techniques 

such as Ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO), and 

Elastic net.  

3.1.1 Ridge Regression   

Ridge regression introduces a penalty in the estimation of parameters 𝛽/. This penalty is a 

simple addition to the OLS estimation procedure seen earlier:  

∑ (𝑦+ −	𝛽, −	∑ 𝛽/𝑥+/)
1
/23

8 + 𝜆∑ 𝛽/8
1
/23

9
+23 = 𝑅𝑆𝑆 + 	𝜆 ∑ 𝛽/8

1
/23 	  

The penalty 𝜆∑ 𝛽/8
1
/23 	, known as ‘shrinkage penalty’ is small when 𝛽1, 𝛽2, . . . , 𝛽/ are  

close to zero. Therefore, minimising the RSS subject to the constraint imposed by the shrinkage 

penalty involves ‘shrinking’ the coefficients towards zero. The tuning parameter (or 

‘hyperparameter’) 𝜆 determines the relative importance of the penalty term. As is evident from 

the equation, if 𝜆 = 	0, this term has no effect and coefficients are estimated using the standard 

OLS procedure. As 𝜆 tends towards infinity, the effect of the penalty term grows and coefficient 

estimates 𝛽/  shrink towards zero. A different set of coefficient estimates are produced for each 

value of 𝜆. Therefore, it is important to carefully select a value for the tuning parameter. This 

can be done using cross-validation, where ridge regressions with varying shrinkage penalty 

values can be modelled to see where the bias-variance tradeoff is minimized, leading to the 

lowest MSE. 

3.1.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

While ridge regressions regularize parameters estimates with high variance in order to improve 

their predictive ability, in datasets where the number of potential predictors is large, challenges 

still remain in interpreting models. For example, many predictors will have negligible 

coefficients, i.e. they will not add value in terms of predictive content. In such situations, it can 
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be difficult to parse which predictors are the most useful. The LASSO technique, much like 

ridge regression, shrinks the parameters towards zero to reduce their variance. However, it lets 

some parameters shrink exactly to zero when the tuning parameter 𝜆 is large enough, so that 

those variables drop out of the model. This creates more sparse and more interpretable models 

with only those variables included that are relevant for predicting the response variable. This 

is achieved by changing the shrinkage penalty from 𝜆∑ 𝛽/8
1
/23  to 𝜆∑ |𝛽/|

1
/23 :  

6>𝑦+ −	𝛽, −	6𝛽/𝑥+/

1

/23

?

89

+23

+ 	𝜆6|𝛽/|
1

/23

	= 	𝑅𝑆𝑆	 + 	𝜆6|𝛽/|
1

/23

 

 

Like ridge regression, minimising the above equation entails shrinking the parameter estimates 

towards zero. Due to the nature of the constraint set by the penalty term in LASSO, some 

variables are allowed to shrink to zero, given a large enough value of the tuning parameter. As 

before, cross-validation should be used to determine the optimum value of the tuning parameter 

to balance the bias-variance trade-off.  

3.1.3 Elastic Net (ElNet) 

A combination of LASSO and ridge regressions are Elastic nets, which allow for a model to 

not be too dependent on the selection made by LASSO, yet allow for model interpretability by 

limiting the number of variables from a large predictor space. This is done by minimizing the 

RSS subject to both ridge and LASSO penalties as shown below. 

  

Source: Mahajan and Srinivasan (2020) 

Here, we have two hyperparameters 𝜆 and 𝛼. 𝜆, as before, ranges from 0 to infinity and increases 

the degree to which parameter estimates are shrunk. 𝛼, the new hyperparameter, determines the 
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relative importance of the LASSO and ridge penalties. It ranges from 0 to 1. If 𝛼 = 	0, then the 

LASSO penalty drops out and we have a ridge regression. If 𝛼 = 	1, the ridge penalty drops 

out and we have a LASSO formulation. This combination allows for relatively stable 

coefficients (with low variance) in the presence of ‘Fat’5 data and multicollinearity (Mahajan 

and Srinivasan, 2020). 

3.2 Tree-Based methods 

Tree-based methods involve partitioning the available predictor-space into a number of regions 

based on pre-specified rules, and making a prediction for the response variable in each region. 

Since this partitioning can be graphically represented in a ‘decision-tree’, such methods are 

called ‘tree-based’ methods or Classification and Regression Trees (CART). Popular examples 

include Random Forests and its ‘Bagged’ or ‘Boosted’ implementations, which involve 

‘growing’ multiple trees. In order to understand them, however, we first need to understand 

how a single tree is grown.  

First, the predictor-space composed of predictors 𝑋1, 𝑋2, . . . , 𝑋/is divided into distinct, non-

overlapping regions 𝑅1, 𝑅2, … , 𝑅/. This is commonly done via recursive binary splitting. This 

entails taking all predictor observations as part of a single region at first. This predictor-space 

is then split on the basis of the predictor and a ‘cutpoint’ that minimises the RSS across the two 

resulting regions. In other words, this partitioning rule searches across all predictors 𝑅/ to find 

an appropriate cutpoint 𝑠, such that we have two regions: 

 

𝑅1(𝑗, 𝑠) 	= 	 {𝑋|𝑋/ 	< 	𝑠}	𝑎𝑛𝑑	𝑅2(𝑗, 𝑠) 	= 	 {𝑋|𝑋/ 	≥ 	𝑠} 

 

where all values of 𝑋/ belonging to 𝑅1 are less than 𝑠, and the rest belong to 𝑅2. The goal behind 

this is to find the predictor 𝑋/and cut-point 𝑠, that minimise the RSS across all regions:  

𝑚𝑖𝑛	(Σ	(𝑦+ 	− 𝑦NO1)
2 	+ Σ(𝑦+ 	− 𝑦NO2)

2)	

 

                                                
5 See section 5.1 below 
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Here, 𝑦P𝑅1
is the mean of the response variable for the training observations in region 𝑅1 and  

𝑦P𝑅2
is the mean of the response variable for observations in region 𝑅2.  

This process is then repeated in the two regions 𝑅1 and 𝑅2, with the aim to find the predictor 

and cut-point that would minimise the overall RSS once more, thereby creating a third region. 

Subsequent regions are created in the same manner. This binary splitting continues until a stop-

criterion is reached i.e. a maximum number of nodes or splits, or a minimum number of 

observations in each region. Once the splitting concludes and we have regions 𝑅1, 𝑅2, … , 𝑅/, 

we predict the value of the response variable in each region to be its mean6, and a tree is thus 

grown.  

With recursive binary splitting, it is easy to have a very high number of regions. Theoretically, 

it is possible to have a region for each training observation of the predictors, resulting in a 

perfectly fitted tree. However, overfitting leads to high variance and thereby, poor out-of-

sample predictions. The solution is ‘Pruning’ of trees. Pruning techniques complemented by 

appropriate cross-validation allow the user to select sub-trees that balance in-sample and out-

of-sample prediction accuracy7.  

Tree-based methods have many advantages. They are useful in modelling interactions between 

different predictors in a better manner than standard techniques, as the latter tend to create more 

regressors relative to data points (Mahajan and Srinivasan, 2020). The relative importance of 

different predictors is also more intuitively understood in a decision-tree format. Nonetheless, 

while single trees can be intuitive to understand, their predictive performance can be poor. The 

solution to this problem is a group of models that grows multiple trees and are known as 

‘Bagging’, ‘Random Forests’ and ‘Boosting’ respectively.  

Growing multiple trees and aggregating the predictions that they provide, improve upon the 

performance of the tree-based methods significantly. If all the predictors are available as 

candidates for splitting and the average prediction of multiple trees grown using bootstrapped 

samples is considered, it is called ‘Bagging’8. Bagging reduces the variance that accompanies 

a single tree. However, if the predictors are highly correlated, the reduction in variance will not 

                                                
6 The mode of the response variable can also be chosen as the de-facto prediction. Mean, however, 
appears to be the default choice in macroeconomic prediction.  
7 For details on these techniques, see James et. al. (2013), pg. 307. 
8 ‘Bagging’ is short for ‘bootstrap aggregation’. It is a general purpose technique and can be used for 
other statistical learning methods too, such as regressions.  
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be large since most trees will be grown in a similar order. Hence, growing multiple trees with 

different variables is useful in order to reduce prediction variance further. This objective is 

achieved by the group of models called ‘Random Forests’.  

Random Forests ‘decorrelate’ the trees by modifying the Bagging methodology. At each split 

in a tree, the learning algorithm is not allowed to consider all the available predictors. Using 

bootstrapping principles, multiple trees are then grown using multiple draws from the training 

sample. This is useful as this leads to different trees created out of different variables, which 

lowers the out-of-sample variance of the model9.  

Random Forests or Bagging techniques develop multiple trees independently of each other and 

then average them. A third technique called Boosting10 is slightly different from these two 

approaches as it grows trees sequentially. The advantage of this sequential process is that the 

residuals of the past trees are used to provide information that is used to grow newer trees. This 

allows the algorithm to learn relatively ‘slowly’ and improve the fit of each tree where its 

residuals are large. This sequential growing of trees lowers the forecasting error.  

While techniques like random forests, bagging and boosting can improve forecast accuracy 

over the predictions of single trees, it can be difficult to interpret the resulting models. For 

example, it is much easier to visually delineate important splits (variables) in a single tree, but 

an average of predictions over multiple trees cannot be as clearly visualised. Hence, tree-based 

methods that grow multiple trees improve predictions at the expense of interpretability. But, 

one can use prediction measures such as RSS and Gini indices to obtain summaries of the 

importance of each predictor, even if the relationship is not visually clear.  

3.3 Artificial Neural Networks 

Artificial Neural Networks, also known simply as Neural Networks, are a set of techniques that 

mimic biological decision-making processes using a set of inputs, analysing their relative 

importance, and using that information to determine an output. The earliest models of such 

nodal learning were known as ‘perceptrons’ (Rosenblatt, 1958), that used inputs 

(𝑋3, 𝑋8, 𝑋Q. . . 𝑋+),	and their weights (𝑤3, 𝑤8,𝑤Q. . . 𝑤+), to determine the output, as the weighted 

sums of the inputs. Neural Networks however, deal with more complex modelling objectives, 

                                                
9 See James et. al. (2013), pg. 320. 
10 As with Bagging, Boosting too is a general purpose technique applicable on other statistical 
learning methods (see footnote 8). However, it is most popularly used on Tree-based methods. 
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and these are achieved by building sequential layers of multiple perceptrons, rather than a 

single one. These intricate network of perceptrons can be categorized into three parts, i.e., an 

input layer, an output layer, and one or more hidden layers in between the input and output 

layers, each consisting of multiple nodes or ‘neurons’. 

There are two more ways in which Neural Networks improve over simple perceptrons. The 

first is to introduce the possibility of non-linearity in the impact that weighted inputs have on 

output. This works through the ‘activation function’ that imposes a non-linear transformation 

on the weighted inputs before they provide information to the next neuron in the chain. Some 

of the commonly used non-linear functions used include sigmoid, Tanh and Rectified Linear 

Unit (ReLU) functions. The second way that a Neural Network improves its performance is by 

a process known as ‘backword propagation’. This is a feedback mechanism from the output 

error in any particular iteration (difference between the estimated output in that iteration and 

its actual value) back to the inputs, enabling an adjustment in their weights in the next iteration, 

so that more and more accurate predictions become possible.     

Figure 1 below is a schematic representation of a single iteration of the process described 

above. There is an input layer that has two neurons (independent variables), a single hidden 

layer with three neurons, and an output layer with a single neuron (target or dependent 

variable). The box highlights the first step in the process of running the model. The importance 

of each of these two input neurons (𝑋1, 𝑋2)	to the next neurons in the hidden layer (here 3, 4 or 

5) is determined by their weights (𝑤3Q, 𝑤3S,𝑤3T) and (𝑤8Q,𝑤8S, 𝑤8T) respectively. Conversely, 

the information that can be received by any particular neuron in the hidden layer is a weighted 

summation of X1 and X2. Apart from the weighted inputs, another term that is added in this 

transformation is a ‘bias’, which is a constant, and similar in concept and function to the 

intercept term in a linear regression. These are represented by (𝜃Q, 𝜃S, 𝜃T) for neurons 3, 4 and 

5 respectively. Finally, the chosen non-linear activation function is imposed on the weighted 

inputs (plus bias), before the results are transferred to the next neuron.  

Next, we look at Figure 2 below. The box now highlights the next step in running the model. 

The transformations described in the last paragraph create derived variables for Node 3, 4 and 

5 respectively. The process in the first step is now repeated using these derived variables as 

inputs. This involves first assigning weights and biases to these inputs and then imposing the 
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activation function on this transformation. The result is the output for the model for this round 

of iteration11.  

 

 

Figure 1: Input to Hidden Layers 

 

 

Figure 2: Hidden Layers to Output 

 

Next, as described earlier, a process of ‘Backward Propagation’ introduces circularity to the 

process in order to let the network learn which connections to emphasise, and thus bring the 

final output closer to a desired value. This process uses a technique called ‘gradient descent’ 

                                                
11 Iterations are called epochs in the neural network literature. 
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to efficiently find the direction and magnitude of change needed in the weights and biases used 

in all the steps of the second and subsequent iterations12. This repeated iteration helps the model 

learn more and more about the data and provide an accurate prediction of the output or target 

variable.  

While Neural Networks were initially designed to analyse cross-sectional data, they are 

increasingly being used in time series analysis by modifying the model to accommodate time 

dimensions as well. Deep Neural Networks (DNNs) build on this concept by having an 

increased number of hidden layers, leading to more complex transformations and functional 

relationships. However, DNNs alone cannot deal with time series data adequately, as the data 

is revealed to each node in the hidden layer simultaneously, as opposed to sequentially, to 

account for temporal dimensions. This is why using only DNNs in this iteration may not 

necessarily help to discern complex relationships that are shaped over time. Recurrent Neural 

Networks (RNNs), on the other hand, allow the incorporation of information sequentially, 

which is suitable for time series analysis. The structure of RNNs is the same as regular neural 

networks, with layers of neurons feeding-forward information. The basic difference is that 

RNNs create multiple ‘copies’ of the same network with each copy corresponding to each 

observation sequentially. The output from the first copy informs how the second one will 

determine its output, which in turn determines the third, the fourth, and so on. Needless to say, 

a drawback of such complicated versions of neural networks is that the computational power 

required to run them goes up substantially. 

4. A meta-analysis of the literature 

In this section, we carry out a meta-analysis of the literature that uses machine learning for 

macroeconomic forecasts. Our goal is to understand whether ML techniques tend to perform 

better than their non-ML counterparts in forecasting growth and inflation. Further, we want to 

find out the conditions under which they perform better: longer or shorter forecast horizons, 

emerging or advanced economies, and so on.   

4.1 Data  

In order to conduct this meta-analysis, we assemble a dataset of papers which utilise ML 

techniques in their forecasts of growth and inflation. Another criterion for the selection of 

                                                
12 The weights and biases in the first iteration do not have any feedback and thus have to be assigned 
arbitrarily. 
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papers was that their forecast period was more recent, definitely after the year 2000. While this 

criterion is inherently arbitrary, the aim is to ensure that our data is relevant, since the global 

economy and inflation rules by central banks changed significantly close to and after the year 

200013.  

In order to compile our dataset, we traced the thread of citations that met our criteria, beginning 

with the most recently available papers. In other words, a 2021 paper meeting our criteria is 

included, its citations are searched to find more relevant papers, and this process is repeated 

for each of the papers identified through this process. Through this search process, we have 

been able to identify sixteen papers that use at least one type of ML technique in forecasting 

either growth or inflation14. Each of these papers also have one quarter and one year ahead 

forecasts that belong to the post-2000 period. Amongst the sixteen papers, there is a relatively 

even split within four groupings: growth in advanced economies, inflation in advanced 

economies, growth in emerging economies and inflation in emerging economies. 

Within advanced economies, Jahn (2018), Biau & D’elia (2010), Jung et. al. (2018) and 

Richardson et. al. (2019) look at growth forecasting in EU countries, Japan, USA and New 

Zealand – Jung et. al. is the only paper in the entire set that looks at both advanced and emerging 

economies (i.e. Mexico, Philippines and Vietnam). The papers in this set use Univariate, 

Multivariate, Factor-based, Penalisation, Tree-based and Neural Network methods on their 

samples. While Jahn (2018) uses regular Neural Networks, Jung et al. (2018) use Recurrent 

Neural Networks. 

Terasvirta et al. (2004), Medeiros et al. (2019), Marcellino (2007), Nakamura (2005), and 

Baybuza et al. (2018) look at inflation forecasting in G7 countries and Russia. Moreover, 

Nakamura (2005), Terasvirta et al. (2004), Medeiros et al. (2019) and Marcellino (2007) all 

look at the United States over different time periods using different methods. The papers in this 

subset use Univariate, Multivariate, Penalisation, Tree-based and Neural Network methods. 

Terasvirta et al. (2004) use Neural Networks, whereas Marcellino (2007) looks at 

Autoregressive Neural Networks. 

                                                
13 The Taylor Rule, for example, was first proposed around 1992-93 (Taylor, 1993) and modified in 
1999 (Taylor, 1999) 
14 The ML techniques used in the identified papers are classified under Penalisation, Tree-based or 
Neural Network methods. Non-ML techniques are classified under Univariate, Multivariate or Factor-
based methods 
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Within emerging economies, a range of countries are covered. For growth, Sanyal & Roy 

(2014) and Roy et al. (2016) look at India whereas Tiffin (2016), Jung et al. and Chuku et al. 

(2017) look at Lebanon, Mexico, Philippines, Vietnam, South Africa, Nigeria and Kenya. The 

papers in this subset use Univariate, Multivariate, Factor-based, Penalisation and Neural 

Network methods.  

With respect to inflation in emerging economies, the subset contains forecasts for Chile (Leal 

et al., 2020), India, South Africa, China (Mahajan & Srinivasan, 2019) and Brazil (Garcia et 

al., 2018). The papers in this subset use Penalisation, Univariate, Factor-based, Tree-based and 

Neural Network methods. While Jung et al. (2018) uses Recurrent Neural Networks, Sanyal & 

Roy (2014) and Roy et al. (2016) use regular Neural Networks. For inflation, within both 

advanced and emerging economy subsets, adaptive iterations of Penalisation techniques have 

also been considered (Leal et al. (2020), Medeiros et al. (2019), Garcia et al. (2018)). 

Several papers such as Richardson et al. (2019), Sanyal & Roy (2014), Jung et al. (2018), Tiffin 

(2016) and Terasvirta (2004) use Combination Forecasts, which have not been included in the 

meta-analysis since they cannot be strictly categorized under the six classes of ML and non-

ML techniques identified in the literature. Table C1 in the Appendix summarises the salient 

characteristics of the papers included in our analysis.  

The papers selected for our study provide us with a sample of 313 forecasts. Table 1 provides 

summary statistics of “adjusted RMSEs”15 of the forecasts of various subgroups of this full 

sample. As seen in Table 1, the number of observations or forecasts for ML (155) and non-ML 

(158) techniques are almost the same, with the latter being marginally higher. While adjusted 

RMSEs belonging to ML techniques have a smaller mean, non-ML techniques have a smaller 

standard deviation, implying a smaller dispersion in their forecasts. There are more 

observations for shorter horizon (1-quarter-ahead) forecasts (165) than for longer ones (4-

quarters-ahead) (148), with shorter horizon forecasts displaying smaller adjusted RMSEs, on 

average. Shorter horizon forecasts also have a smaller dispersion, indicating lower volatility in 

their predictions. The number of advanced and emerging economies in our dataset are almost 

equal, with the former group showing smaller adjusted RMSEs on average. Emerging 

economies, however, display a smaller dispersion in their forecast errors.  

                                                
15 For a definition of RMSE and “adjusted RMSE”, see section 4.2 below. 
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There are 93 more observations available for inflation relative to growth, in the collected 

dataset. Growth forecasts appear more accurate, with a smaller average adjusted RMSE. 

Inflation forecasts have a smaller dispersion, however, indicating less volatility in its 

predictions. Within growth forecasts, there are 8 more observations belonging to ML 

techniques relative to non-ML techniques. While ML techniques display a higher average 

accuracy due to a smaller average, non-ML techniques show lower volatility through a smaller 

dispersion. Within inflation forecasts, there are 11 more observations for non-ML techniques 

relative to ML techniques. Here too, ML techniques have a smaller average but higher 

dispersion.  

Table 1: Summary Statistics of Adjusted RMSEs by Groups of Forecasts 

Group n Mean SD Min Max 

Non-ML 158 0.016 0.399 -1.108 2.008 
ML 155 -0.07 0.568 -1.988 1.993 

Horizon 
     

4-quarter 148 0.0206 0.413 -1.988 1.315 
1-quarter 165 0.002 0.411 -1.472 2.008 

Country type 
     

Advanced 157 -0.074 0.545 -1.988 1.993 
Emerging 156 0.0211 0.425 -1.472 2.008 

Indicator type 
     

Inflation 203 -0.038 0.332 -0.963 1.242 
Growth 110 -0.004 0.695 -1.988 2.008 

Growth 
     

Non-ML 51 0.158 0.581 -1.108 2.008 
ML 59 -0.145 0.758 -1.988 1.993 

Inflation 
     

Non-ML 107 -0.051 0.249 -0.917 0.854 
ML 96 -0.024 0.408 -0.964 1.242 

Method 
     

Univariate 101 0.006 0.365 -0.917 2.008 
Multivariate 43 0.083 0.483 -1.108 1.315 

Factor 14 -0.118 0.325 -0.997 0.118 
Penalisation 

Trees 
62 
21 

0.020 
0.012 

0.346 
0.507 

-0.947 
-0.825 

0.885 
1.185 

Neural Networks 
          SVM 

71 
1 

-0.173 
-0.0348 

0.715 
- 

-1.988 
-0.0348 

1.993 
-0.0348 

            Source: Author’s calculations. 

For the purposes of the meta-analysis, we also club each ML and non-ML technique used in 

the collected forecasts into six broader classes. Non-ML techniques can be clubbed under 
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Univariate, Multivariate and Factor-based methods, and ML techniques can be clubbed under 

Penalisation methods, Tree-based methods, and Neural Networks. Among these six classes of 

methods that encompass the ML and non-ML techniques used in the collected forecasts, the 

highest number of observations belong to Univariate techniques. This is expected, since 

autoregressive techniques are commonly used as benchmarks in macroeconomic forecasts. The 

lowest number of observations correspond to a single forecast that uses the Support Vector 

Machine (SVM) method, followed by Factor-based methods. While the former method is an 

ML technique, it cannot be strictly categorised under any of the three classes of ML techniques 

identified. There are also an insufficient number of forecasts in the dataset that use this method. 

Thus, while it is included in the meta-analysis as an ML technique wherever ML techniques as 

a group are compared with their non-ML counterpart, it is excluded in analyses regarding the 

classes of methods.  

Excluding the single SVM forecast therefore, the lowest number of observations correspond to 

Factor-based methods. Among the six classes, the lowest average adjusted RMSEs belongs to 

Neural Networks followed by Factor-based methods. Neural networks, however, also display 

the highest volatility in their predictions, evident by the group’s standard deviation. Factor-

based methods, on the other hand, display the lowest volatility among the six classes. Initial 

results thus suggest that a growth or inflation forecaster would do well to use Factor-based 

methods due to their low volatility of results and low average forecast error.  

4.2 Methodology 

From the papers included, we extract the Root Mean Squared Error (RMSE) of their respective 

forecasts, by each forecasting method using:  

 

𝑅𝑀𝑆𝐸	 = 	X
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑+ − 𝐴𝑐𝑡𝑢𝑎𝑙+)89
+23

𝑛  

The RMSE is a commonly used measure to indicate the precision of a forecast ––the lower the 

difference between the predicted and actual observation, the better the forecast. To keep our 

analysis focussed, we only extracted RMSEs for the 1-quarter-ahead (1Q-ahead) and 4-

quarters-ahead (4Q-ahead) forecast horizons. These represent short-term and long-term 

predictions of growth and inflation. Once extracted, the RMSEs are organised by forecast 



21 
 

method and country (Appendix Tables A1-A4). We also specify whether each country is an 

‘advanced’ or an ‘emerging’ economy.  

It may be noted here that the RMSEs for different countries may have country fixed effects as 

a strong underlying factor. Before making comparisons between the RMSEs produced by ML 

and non-ML technique based forecasts, these effects need to be controlled. To do this, the mean 

RMSE of each country (across all studies) is subtracted from the RMSE of each forecast based 

on that country. The recalculated RMSEs are termed “adjusted RMSEs”. These are presented 

in Tables A5 to A8 in the Appendix.  

On the adjusted RMSEs, we conduct tests of statistical significance in order to gauge the 

relative performance of ML and non-ML techniques. It may be noted that while our dataset is 

fairly exhaustive in terms of including relevant papers, it is still a small sample (345 forecasts) 

because the literature that uses ML techniques in forecasting growth and inflation is still in 

nascent stages. As is well known, a small sample from an unknowable population violates the 

assumptions that go into the more popularly used T-test (Ch-13.3, Freund, 2000). Non-

parametric tests like the Mann-Whitney, on the other hand, are useful in this scenario because 

they make few, if any, assumptions about the distribution of the population and are relatively 

more suitable for smaller samples. We find that a non-parametric approach is used in other 

meta-reviews of ML techniques as well, for instance in the context of financial market 

forecasting (Ryll & Seidens, 2019). For these reasons, we use the Mann-Whitney U-test as the 

first step in determining statistical significance.  

The U-test provides us a first layer of inference with respect to statistical significance. 

However, being a two-tailed test, it only tell us whether the ML and the non-ML forecasts have 

statistically significantly different performance levels or not. This does not tell us clearly 

whether the ML forecasts are better than the non-ML ones. We get some indication on which 

of these two has a better performance from the p-order, which is the probability, using random 

draws, that the average (adjusted) RMSE of the first group in our sample (non-ML forecasts) 

is greater than that of the second (ML forecasts). Next, for more robustness, we complement 

the U-test with the T-test.  

We conduct a total of 82 tests. However, only those results that have a significant p-value for 

both the U-Test and the T-test are considered significant or conclusive. These results are 

described in Section 4.3.   
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4.3 Results 

The first set of statistical tests described in Section 4.2 are conducted on the ‘superset’ or the 

entire sample. The superset contains the adjusted RMSEs for both growth and inflation, for 

both advanced and emerging economies, and both one quarter and four quarter ahead horizons. 

Subsequently, tests are conducted separately on growth and inflation, and within those two, 

separately for types of countries and for forecast horizons. Results can be seen in Table 2. The 

results highlighted in green have statistically significant U and T tests.  

As seen from the rows highlighted in green, ML based forecasts have superior performance for 

the sample for growth forecasts as a whole, as well as the sample for longer run growth 

forecasts (with a horizon four quarters ahead) and the sample for growth forecasts in emerging 

economies. Additionally, the sample for growth forecasts in advanced economies at the four 

quarter ahead horizon also shows superior ML performance.  

While the results for the superset are not conclusive, they do indicate better performance by 

ML techniques, since the p-order implies a 55% chance that a random draw from the entire 

sample would yield higher (adjusted) RMSEs for non-ML methods than for ML methods. The 

T-test in the final column also shows that the average non-ML adjusted RMSE is greater than 

its ML counterpart.  The relatively better performance of ML techniques in forecasting growth, 

appears to be driving the result for the full sample including growth and inflation.  

Next, we dive deeper in order to gauge the performance of different types of ML techniques. 

In order to do this, we compare each of the three classes of ML techniques (Penalisation 

methods, Tree-based methods and Neural Networks) against each class of non-ML techniques 

(Univariate, Multivariate, Factor-based methods) to obtain more detailed results about their 

relative performance. These comparisons yield nine pairs, seen in Table 3. U-Tests and T-tests 

are conducted first on these samples, and we find that the only significant result here is that 

Neural Network based forecasts have done better than Multivariate methods.  

We finally partition these nine samples (each having one class of ML and one class of non-ML 

based forecasts respectively) further, in three alternative ways. The first partition separates 

those having growth forecasts from those with inflation forecasts. The second partition 

separates developing from developed countries. The third partition separates shorter horizon 

forecasts from those with longer horizon. We repeat the statistical tests for these new samples. 

For brevity, only the significant results from these tests are shown in Table 4.   
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Table 2: Significance tests: ML vs non-ML 

 # of observations Mann-Whitney U test Student's T-test 
     Non-ML    ML  

p-value 

p-order 
(non-ML > 

ML) 

  p value 
(H1≠0) 

p value 
(H1<0) 

p value 
(H1>0) 

Superset 158 155 0.146 0.548 0.122 0.9390 0.0610* 
Inflation 107 96 0.801 0.490 0.4696 0.285 0.7152 
Inflation - 1Q 52 44 0.749 0.481 0.7552 0.3776 0.6224 
Inflation - 4Q 55 52 0.890 0.492 0.6217 0.3108 0.6892 
Inflation – EM 51 52 0.331 0.556 0.3177 0.8412 0.1588 
Inflation – AE 56 44 0.131 0.412 0.1373 0.0687* 0.9313 
Inflation – AE & 1Q 28 21 0.332 0.418 0.3008 0.1504 0.8496 
Inflation – AE & 4Q 28 23 0.869 0.486 0.2756 0.1378 0.8622 
Inflation – EM & 1Q 24 23 0.708 0.533 0.4781 0.7610 0.2390 
Inflation – AE & 4Q 27 29 0.363 0.572 0.4873 0.7564 0.2436 
Growth 51 59 0.0241*** 0.625 0.9901 0.0197 0.0099*** 
Growth – 1Q 24 28 0.569 0.454 0.67 0.335 0.665 
Growth – 4Q 27 31 0.0009*** 0.754 0.0012*** 0.9994 0.0006*** 
Growth – EM 19 38 0.0004*** 0.787 0.001*** 0.999 0.0001*** 
Growth – AE 32 21 0.414 0.432 0.6497 0.3248 0.6752 
Growth – AE & 1Q 4 15 0.841 0.533 0.531 0.2658 0.7342 
Growth – AE & 4Q 15 23 0.0004*** 0.842 0*** 1 0*** 
Growth – EM & 1Q 20 13 0.396 0.412 0.7726 0.3898 0.6102 
Growth – EM & 4Q 12 8 0.969 0.495 0.7240 0.3620 0.6380 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

 

Table 3: Significance tests (pairwise): superset 

 # of 
observations 

Mann-Whitney U 
test 

Students T-test 

     Non-
ML  

  ML  p value p order  
(non-ML > 

ML) 

  p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Penalised vs Univariate 101 62 0.512 0.531 0.8161 0.4080 0.5920 
Penalised vs 
Multivariate 

43 62 0.804 0.514 0.4648 0.7678 0.2324 

Penalised vs Factor 14 62 0.703 0.533 0.1714 0.0857* 0.9143 
Tree-based vs 
Univariate 

101 21 0.353 0.565 0.9649 0.4824 0.5176 

Tree-based vs 
Multivariate 

43 21 0.607 0.540 0.5953 0.7023 0.2977 

Tree-based vs Factor 14 19 0.606 0.554 0.362 0.181 0.819 
Neural Network vs 
Univariate 

101 71 0.2104 0.556 0.0548** 0.9726 0.0272** 

Neural Network vs 
Multivariate 

43 71 0.1185* 0.587 0.0247** 0.9876 0.012** 

Neural Network vs 
Factor 

14 71 0.722 0.531 0.655 0.6725 0.3275 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  
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Table 4: Significance tests (pairwise) : significant results by indicator, country-type and forecast horizon 

 # of observations Mann 
Whitney U 
test 

Students T-test 

Pairwise Condition Non-
ML 

ML p-value p-order 
(non-ML 
> ML) 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Penalisation 
by Univariate 
methods 

Growth 23 18 0.0554** 0.676 0.0314** 0.9843 0.0157*** 

Penalisation 
by Multivariate 
methods 

EM 19 33 0.0795* 0.352 .032** 0.0161** 0.9839 

Tree by 
Univariate 
methods 

AE 48 10 0.0235** 0.727 .1095 0.9453 0.0547** 

Tree by 
Multivariate 
methods 

EM 19 11 0.0051** 0.196 .0178** 0.0089*** 0.9911 
AE 24 10 0.0026*** 0.821 0.0009*** 0.9995 0.0005*** 

Neural 
Networks by 
Univariate 
methods 

Growth 23 37 0.0355* 0.662 .0229* 0.9885 0.0115** 
EM 53 29 0.0883* 0.615 .0506* 0.9747 0.0253** 
4Q 49 44 0.0221** 0.638 .02049** 0.9875 0.0125** 

Neural 
Networks by 
Multivariate 
methods 

Growth 25 37 0.0492** 0.648 .0407** 0.9796 0.0204*** 
AE 24 42 0.0233*** 0.668 .0085*** 0.9958 0.0042*** 
1Q 16 27 0.0390** 0.310 .2590 0.1295* 0.8705 
4Q 27 44 0.0022*** 0.714 0.0017*** 0.9991 0.0009*** 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

 

Pairwise results from Table 4 tests show that:  

1. Penalisation methods provide better forecasts than univariate methods in forecasting 

growth. Multivariate methods perform better than penalisation methods in the context 

of emerging economies.  

2. Tree-based methods provide better forecasts than Univariate methods for advanced 

economies. The same holds true when Tree-based methods are compared with 

Multivariate methods. However, Multivariate methods also show relatively superior 

performance in emerging economy contexts.  

3. Neural Networks provide better forecasts than Univariate methods for emerging 

economies, longer forecast horizons (four quarters ahead) and in forecasting growth. 

When compared with Multivariate methods, the same conditions hold, with the 

exception of the country type –– Neural Networks do better in advanced economies 

when compared against Multivariate methods. Multivariate methods also outperform 

Neural Networks at shorter forecast horizons (one quarter ahead).  
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4. No ML class performed significantly better than their factor-based non-ML 

counterparts.  

From these results, there seems to be some indication that ML methods tend to outperform their 

non-ML counterparts in advanced economies, for longer forecast horizons, and in predicting 

growth. Is there some explanation behind these results? In other fields, there is some evidence 

to suggest that ML methods tend to outperform their non-ML counterparts in the presence of 

strong non-linearity in the relationship between independent and target variables. Are non-

linearities more accentuated in forecasting growth, over longer horizons or particularly for 

advanced economies? This is outside the scope of this paper and a deeper analysis would be 

needed to examine the underlying causal implications.  

5. Using big data and machine learning for economic forecasting: a user’s guide 

The previous sections aimed to provide a comparative analysis of the use of big data and ML 

techniques in economic forecasting, against their standard counterparts. This section will 

discuss some of the practical issues that forecasters, who wish to make use of big data and ML 

techniques for macroeconomic forecasting, have to keep in mind. This includes describing the 

choices one has to make at each stage of the forecasting process. 

The first step involves some basic pre-checks on the data. These include tests for stationarity 

(eg. ADF test), and structural breaks (eg. Zivot-Andrews test), that are standard practices when 

regular, traditional databases are used for forecasting. Testing for stationarity is important since 

a stationary series would largely behave consistently over time, making it easier to predict the 

future using past observations. Moreover, many forecasting models assume stationarity of the 

data (Sanyal and Roy, 2014). Based on these tests, appropriate data transformations can be 

conducted, such as making the data stationary.  

Once the basic pre-checks and necessary data transformations have been conducted, the 

forecaster needs to select the relevant predictors from the set of the available n, also known as 

‘feature selection’ in the machine learning literature. One way of doing this is through cross-

correlation matrices, cointegration tests, and similar procedures to identify the variables that 

co-move with the target variable. Another way to do this is through penalisation methods (see 

Section 3.1) like LASSO, ridge regressions and elastic nets as these methods minimise the 

effects of less relevant predictors. The forecaster can even use LASSO strictly as a feature 
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selection method, by taking the predictors selected within LASSO and using them in a different 

predictive model.  

Ideally, the forecaster should balance ‘automatic’ feature selection techniques such as 

penalisation methods with some theoretical scrutiny, i.e. the selected predictors’ co-movement 

with the target variable should make some theoretical or intuitive sense. Thus, an unintuitive 

predictor revealed through LASSO need not be rejected outright, but should be judged on the 

basis of its possible theoretical link and predictive strength with respect to the target variable. 

Statistical techniques such as ‘stability selection’ applied to penalisation methods, can also help 

make this process easier by guarding against the inclusion of spurious predictors16. Variants of 

the LASSO, such as hierarchical LASSO and group LASSO can also be utilised for this purpose 

after careful consideration of the modelling strategy they bring to the table in the context of 

macroeconomic forecasting17.  

The next step involves further understanding the data generating process (DGP) of the target 

variable in order to get a sense of the way it moves. In particular, tests for checking whether 

the target variable is mean-reverting or has a long memory are important. If a series is mean-

reverting, it has a greater tendency to oscillate: lower observations follow higher observations 

(and vice-versa). On the other hand, a series with a long memory has observations generally 

moving in the same direction as previous observations: higher (lower) observations follow 

higher (lower) observations. The Hurst Exponent can be used to determine this property 

(Sanyal and Roy, 2014).  

Mean-reverting series are non-linear, whereas those with a long memory are relatively linear. 

Knowing which category the target variable belongs to, should direct the forecaster to a 

particular class of models. ML techniques in general are well-suited for predicting non-linear 

series since they do not make assumptions about the functional form of the ‘fit’ (see 

Introduction). However, non-ML techniques that allow for changes in parameters (such as 

time-varying parameter regressions) are also suitable for tracking non-linear series.   

While an examination of the DGP should guide the forecaster towards a class of models that is 

expected to perform well, it should not restrict their attention solely to that class. As our meta-

analysis shows, forecast performance is conditional on factors such as country-type, and 

                                                
16 See Meinshausen & Bühlmann (2010) for further reading on stability selection 
17 See Bien et al. (2013) and Yuan & Lin (2006) for further reading on hierarchical and group LASSO 
respectively  
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forecast horizon. Moreover, the literature on macroeconomic forecasting that uses ML methods 

is still nascent. At this stage, therefore, it is difficult to unambiguously know the exact class of 

models that will provide the best results, given the circumstances in which the user finds 

themselves. Thus, a good approach would be to formulate a hypothesis about the class of 

models that one would expect to perform well, given the nature of the DGP. The forecaster 

should then test multiple types of classes (ML, non-ML, linear, non-linear) so as to not exclude 

a class that may end up performing well, and see whether the hypothesis is accepted or rejected.    

Finally, it is worth noting that regular k-fold cross-validation may not be appropriate for 

optimising the ML techniques used in macroeconomic forecasting. Cross-validation is 

important for finding the optimum value of the hyperparameters of ML techniques in order to 

find the right balance between bias and variance (see Section 3). The popularly used k-fold 

cross validation assumes that observations are independent and identically distributed, which 

allows observations to be interchangeably assigned to different folds within the series. Since 

macroeconomic time-series usually have at least some degree of correlation among the 

observations, k-fold cross validation can sever that correlation. However, variations such as 

rolling window cross validation or block cross validation exist, which preserve this correlation 

and are more appropriate for optimising ML techniques in the context of time series18.  

The choices available to a forecaster with respect to technique selection also depend on the 

nature of the data available. To illustrate this point, we use the classification by Doornik and 

Hendry (2015), who divide big data into three types: ‘Fat Data’, ‘Tall data’ and ‘Huge Data’.  

5.1 Fat Data 

Fat Data are characterised by a large number of predictors (n), indicating a large cross-sectional 

dimension, but a limited temporal dimension (t). In other words, if n > t, data is said to be ‘Fat’. 

Examples of this include large cross-sectional data, such as census data or single-period price 

collection data.  

The forecaster has to first undertake the pre-checks discussed above, including stationarity and 

structural break tests. It must be noted, however, that these are only possible if the temporal 

dimension in a Fat dataset is sufficiently large. Next, since Fat Data has a very large number 

of potential predictors, selection of an optimal number of predictors is an important step in this 

                                                
18 See Schnaubelt (2019) for further reading 
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case. Techniques like LASSO are very useful here for gauging the most relevant predictors, 

since it excludes those that are not. In general, the penalization-based methods are useful here 

as they minimise the effects of less relevant predictors. In some sense they combine the ‘feature 

selection’ and ‘predictive modelling’ steps into one, which is particularly useful when 𝑛 is very 

large. Panel estimation and factor-based methods such as Dynamic Factor Models, Factor 

Augmented VARs or methods that build on Principal Component Analysis can also be used in 

their ‘sparse’ versions (such as a sparse Factor-Augmented Vector Autoregressive (FAVAR) 

models), so that they account for the small temporal dimension in a Fat dataset. Bayesian 

methods are also preferred over classical estimation methods as they handle a fixed t and large 

cross-section with appropriate priors (Buono et. al., 2017). 

Fat datasets are usually not particularly useful for macroeconomic predictions due to their 

limited temporal content, unless either t is large enough or variables are homogeneous enough 

over time (i.e., they are, or can be aggregated to, the same data frequency) to allow the use of 

panel techniques. However, both non-ML and ML techniques can be used for making forecasts 

with fat data, given that careful processing and pre-checks are conducted before choosing a 

predictive model.  

5.2 Tall Data 

Tall Data has a limited number of predictors and a big temporal content (t > n). Data such as 

daily cash withdrawals from ATM machines or second-by-second keyword internet search 

volumes fall in this category. Reconciling high and low frequency data in this instance is 

important, since predicting macroeconomic variables like growth or inflation may require 

aggregating high-frequency Tall data to a lower frequency (quarterly or annual) that matches 

that of the target macroeconomic series in question. 

Working with Tall data should start with pre-checks similar to those mentioned above 

regarding stationarity and structural breaks, using the appropriate statistical tests. Unlike Fat 

data, since Tall data does not have a big n dimension, feature selection is relatively easier than 

in Fat data. It is therefore not necessary to use penalisation techniques to select features or 

factor-based methods to reduce many features into fewer factors. 

Since Tall data are characterised by their big temporal content, tests to further understand the 

DGP of the series beyond stationarity or structural breaks, such as its mean-reverting 

properties, remain important to account for time variation in the data. Based on this information 
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and the necessary data-transformations, one can formulate a hypothesis on the class of model–

– linear, non-linear, non-ML or ML––that will best fit the data. Classical time series 

econometric models can be used with tall data once the appropriate data transformations have 

been conducted and mean-reverting properties of the data have been examined.  

5.3 Huge Data 

Huge datasets are characterised by having both a large number of predictors and a large 

temporal dimension (big n and big t). All activity records of mobile subscribers or all Point-of-

Sale (POS) transactions in a country in a time period are considered relevant types of Huge 

data. Since such data is rich in terms of its temporal content and the potential predictors that 

can be used, it is most desirable from a macroeconomic forecasting perspective. However, only 

a few information aggregators like Google (eg. Google Trends) have successfully managed to 

make such data publicly available. 

The first step to working with Huge data for macroeconomic forecasting again involves 

conducting the necessary pre-checks for stationarity and structural breaks in the data, and 

conducting appropriate transformations.  

Feature selection becomes important with Huge data, much like Fat data, since it can be 

computationally taxing to find the most relevant predictors from a large set of 𝑛. Penalisation 

techniques, therefore, have a natural advantage in this scenario. More complex ML techniques, 

such as neural networks or tree-based methods, which automate the process of finding 

relationships between the predictors and target series can also be used with Huge data. As is 

the case for Fat data, it is useful to balance ‘automatic’ feature-selection with theoretical and 

intuitive scrutiny. Using strict priors on a general regression could also lead to well-performing 

Bayesian estimates instead of selecting or summarising indicators (Buono et al. 2017).  

Once the subset of relevant predictors has been identified after the necessary pre-checks on the 

data, the steps remain the same: further understand the DGP of the reference series, formulate 

a hypothesis on the class of models that are expected to provide the best forecasts given the 

DGP, and test different kinds of models (linear, non-linear, ML and non-ML).  
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6. Conclusion 

Are big data and machine learning based forecasts better than their traditionally used, standard 

counterparts? With respect to data, we find that there are both advantages and limitations to 

using big data. Because of its organic nature, it provides a variety of high-frequency data that 

can help with issues of jagged-panels and measurement biases that accompany standard data. 

However, it also suffers from sampling biases stemming from the ‘digital divide’ that remains 

even in an increasingly connected and electronic world. Big data, therefore, should be 

considered a complement and not a substitute of its standard counterparts, and ‘big data hubris’ 

needs to be avoided.  

With respect to forecasting techniques, the results are less straightforward. Our meta-analysis 

suggests that ML techniques do not necessarily dominate their non-ML counterparts in every 

condition, but are definitely superior under certain conditions: for longer forecast horizons, 

advanced economies and for growth forecasting. Non-ML Factor-based methods are especially 

competitive against ML methods and we see no significant results when the former is compared 

against different classes of ML techniques. On the other hand, all ML techniques did 

significantly better than Univariate methods. This is important because Univariate methods are 

still commonly used as benchmarks in forecasts of growth and inflation, effectively setting an 

artificially low standard for comparing the performance of other techniques. Future studies 

using ML techniques for forecasting growth and inflation should thus use more competitive 

benchmarks in order to evaluate the performance of ML techniques more accurately. Our 

dataset also suggests that for growth, ML techniques are used far more in advanced economies 

than in emerging countries, and this may be driving some of the insignificant results in case of 

developing countries. For inflation, while ML and non-ML techniques are used equally in 

emerging economies, non-ML techniques are used more in advanced economies. Therefore, 

there is significant scope for growth forecasters in emerging economies and inflation 

forecasters in advanced economies to experiment more with ML techniques in the future.  

Macroeconomic forecasting is not an exact science and there are parts of the process where 

choices have to be made based on the data available and the model-builders intuition. 

Hopefully, the meta-analysis of the predictive performance of these state-of-the-art forecasting 

techniques, and the user’s guide provided in this paper, will help macroeconomic forecasters 

have a better understanding about the choices available to them.  
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Appendix 
 
 
A. RMSEs and adjusted RMSEs  
 
Table A1: 1Q-ahead RMSEs (Growth) 
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Table A2: 1Q-ahead RMSEs (Inflation) 

 
 
 
 
 
 
 
 
 
 
 
Table A3: 4Q-ahead RMSEs (Growth) 
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Table A4: 4Q-ahead RMSEs (Inflation) 

 
 
 
 
 
 
 
 
 
Table A5: 1Q-ahead adjusted RMSEs (Growth) 
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Table A6: 1Q-ahead adjusted RMSEs (Inflation) 

 
 
 
 
 
 
 
 
 
 
 
 
Table A7: 4Q-ahead adjusted RMSEs (Growth) 

 
 
 
 
 
 
 
 
 
 
 
 



38 
 

 
 
 
 
Table A8: 4Q-ahead adjusted RMSEs (Inflation) 

 
 
 
 
 
B. Pair-wise results 
 
Table B1: Significance tests (Penalisation methods vs Univariate methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Penalisation methods 
by Univariate 
methods 

Non-ML ML p-value p-order 
(non-ML > 
ML) 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Growth 23 18 0.0554** 0.676 0.0314** 0.9843 0.0157*** 
Inflation 78 44 0.594 0.471 .0179** 0.0090** 0.9910 
EM 53 33 0.430 0.551 .2276 0.8862 0.1138 
AE 48 29 0.9064 0.508 .1269 0.0634* 0.9366 
1Q 52 32 0.3553 0.561 .8380 0.5810 0.4190 
4Q 49 30 0.9799 0.498 .6201 0.3101 0.6899 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

 
 
 
Table B2: Significance tests (Penalisation methods vs Multivariate methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Penalisation 
methods by 
Multivariate methods 

Non-ML ML p-value p-order 
(non-ML 
> ML) 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Growth 25 18 0.1130 0.644 .0616** 0.9692 0.0308** 
Inflation 18 44 0.1303 0.376 .003*** 0.0015*** 0.9985 
EM 19 33 0.0795* 0.352 .032** 0.0161** 0.9839 
AE 24 29 0.1174 0.626 .0809* 0.9595 0.0405** 
1Q 16 32 0.2288 0.393 .0759* 0.0380** 0.9620 
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4Q 27 30 0.2341 0.593 0.1657 0.9171 0.0829* 
*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

 
Table B3: Significance tests (Penalisation methods vs Factor methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Penalisation methods 
by Factor methods 

Non-ML ML p-value p-order 
(non-ML > 
ML) 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Growth 3 18 0.2617 0.278 .2798 0.1399 0.8601 
Inflation 11 44 0.3734 0.589 .1343 0.0672* 0.9328 
EM 11 33 0.5882 0.556 .1919 0.0960* 0.9040 
AE 3 29 0.9472 0.625 0.5245 0.2622 0.7378 
1Q 8 32 0.4591 0.588 .367 0.1836 0.8196 
4Q 6 30 0.8919 0.481 .3175 0.1587 0.8413 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

Table B4: Significance tests (Tree-based methods vs Univariate methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Tree methods by 
Univariate methods 

Non-ML ML p-value p-order 
(non-ML > 
ML 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Growth 23 3 0.7546 0.435 .7017 0.3508 0.6492 
Inflation 78 18 0.2614 0.586 .9760 0.4880 0.5120 
EM 53 11 0.2759 0.394 .290 0.1450 0.8550 
AE 48 10 0.0235** 0.727 .1095 0.9453 0.0547** 
1Q 52 12 0.6012 0.550 .8508 0.4254 0.5746 
4Q 49 9 0.3646 0.598 .877 0.5614 0.4386 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

 
Table B5: Significance tests (Tree-based methods vs Multivariate methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Tree methods by 
Multivariate methods 

Non-ML ML p-value p-order 
(non-ML 
> ML) 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Growth 25 3 0.6221 0.400 .6691 0.3345 0.6655 
Inflation 18 18 0.8329 0.522 .8759 0.4375 0.5621 
EM 19 11 0.0051** 0.196 .0178** 0.0089*** 0.9911 
AE 24 10 0.0026*** 0.821 0.0009*** 0.9995 0.0005*** 
1Q 16 12 0.3528 0.393 .2185 0.1093* 0.8907 
4Q 27 9 0.2217 0.640 .2778 0.8611 0.1389 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

 
 

 
Table B6: Significance tests (Tree-based methods vs Factor methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Tree methods by 
Factor methods 

Non-ML ML p-value p-order 
(non-ML 
> ML 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 
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Growth 3 3 0.2000 0.111 .1309 0.0654** 0.9346 
Inflation 11 18 0.1338  0.672 .6315 0.6843 0.3157 
EM 11 11 0.3653 0.380 .0301** 0.0151** 0.9849 
AE 3 10 0.1608 0.800 .0394** 0.9803 0.0197** 
1Q 8 12 0.6784 0.563 .3489 0.1744 0.8526 
4Q 6 9 0.6070 0.693 .765 0.3827 0.6173 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

 
Table B7: Significance tests (Neural network methods vs Univariate methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Neural Network 
methods by 
Univariate methods 

Non-ML ML p-value p-order 
(non-ML > 
ML 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Growth 23 37 0.0355* 0.662 .0229* 0.9885 0.0115** 
Inflation 78 34 0.5912 0.468 .3534 0.8233 0.1767 
EM 53 29 0.0883* 0.615 .0506* 0.9747 0.0253** 
AE 48 42 0.8390 0.487 .5147 0.7426 0.2574 
1Q 52 27 0.1599 0.403 .9588 0.4794 0.5206 
4Q 49 44 0.0221** 0.638 .02049** 0.9875 0.0125** 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  

 
Table B8: Significance tests (Neural network methods vs Multivariate methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Neural Network 
methods by 
Multivariate methods 

Non-ML ML p-value p-order 
(non-ML > 
ML 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Growth 25 37 0.0492** 0.648 .0407** 0.9796 0.0204*** 
Inflation 18 34 0.3323 0.417 .4180 0.7910 0.2090 
EM 19 29 0.9127 0.490 .9514 0.4757 0.5243 
AE 24 42 0.0233*** 0.668 .0085*** 0.9958 0.0042*** 
1Q 16 27 0.0390** 0.310 .2590 0.1295* 0.8705 
4Q 27 44 0.0022*** 0.714 0.0017*** 0.9991 0.0009*** 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  
 
 
 
Table B9: Significance tests (Neural network methods vs Factor methods) 
 # of observations Mann Whitney U 

test 
Students T-test 

Neural Network 
methods by Factor 
methods 

Non-ML ML p-value p-order 
(non-ML > 
ML 

p value 

(H1≠0) 
p value 
(H1<0) 

p value 
(H1>0) 

Growth 3 37 0.4569 0.360 .3694 0.1847 0.8153 
Inflation 11 34 0.5092 0.568 .1042 0.9475 0.0521 
EM 11 29 0.9050 0.486 .9274 0.4637 0.5363 
AE 3 42 0.7791 0.556 .2417 0.8792 0.1208 
1Q 8 27 0.2862 0.370 .3998 0.1999 0.8001 
4Q 6 44 0.3742 0.616 .3087 0.8456 0.1544 

*** = 1%, **=5%, *=10%; H0 (null hypothesis) is that group means are equal [mean (non-ML) – mean (ML) = 0]; Green 
cells represent ML outperforming non-ML. Red cells represent the converse.  
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C. Descriptive characteristics of included literature 
 
Table C1: Papers by country, time-period examined, forecast horizon and indicator forecasted 

Author Country Time period Forecast horizon  Indicator  
Richardson et. 
al.(2019) 

New Zealand 1995-2008 1-quarter Growth 

Jung et. al. (2018) U.K, U.S., Germany, Spain, Mexico, 
Philippines, Vietnam 

1987-2016 1-quarter, 4-
quarter 

Growth 

Jahn (2018) Austria, Belgium, Denmark, Finland, 
France, Germany, Greece, Italy, 
Netherlands, Portugal, Spain, Sweden, 
U.K., U.S., Japan 

1996-2016 4-quarter Growth 

Biau & D’elia 
(2010) 

Euro Area 1995-2009 1-quarter Growth 

Sanyal & Roy 
(2014) 

India 1997-2011 1-quarter, 4-
quarter 

Growth 

Roy et. al. (2016) India 2006-2016 1-quarter, 4-
quarter 

Growth 

Tiffin (2016) Lebanon 1996-2013 1-quarter Growth 
Chuku et. al. 
(2017) 

South Africa, Nigeria, Kenya  1-quarter Growth 

Baybuza et al 
(2018) 

Russia 2008-2018 1-quarter, 4-
quarter 

Inflation 

Nakamura (2005) U.S. 1960-2003 1-quarter, 4-
quarter 

Inflation 

Terasvirta et 
al(2004) 

Canada, France, Germany, Italy, 
UK,.U.S., Japan 

1960-1999 1-quarter, 4-
quarter 

Inflation 

Medeiros et al. 
(2019) 

U.S. 1990-2015 1-quarter, 4-
quarter 

Inflation 

Marcellino (2007) U.S. 1959-2004 1-quarter, 4-
quarter 

Inflation 

Garcia et al. (2018) Brazil 2003-2015 1-quarter, 4-
quarter 

Inflation 

Mahajan & 
Srinivasan (2019) 

India, South Africa, China 2003-2019 1-quarter (India 
only), 4-quarter 

Inflation 

Leal et al. (2020) Chile 2003-2019 1-quarter, 4-
quarter 

Inflation 
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