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Abstract

In the last few decades, scholars have contributed to a flourishing literature on casual
inference and the demand for its application in areas like programme evaluation has
increased. Our suggestion is that the following ingredients are useful for demystifying
causal inference in introductory courses: (1) using the potential outcomes and causal
graph frameworks, (2) covering applications with real data that use key methods for
causal inference: experiments, regression discontinuity etc., (3) using Monte Carlo
simulation, and (4) using data graphs. The first two ingredients are components of
the scholarship in causal inference, while the latter two are more general ingredients
of statistical and econometric pedagogy. We discuss the case for these ingredients,
drawing on the substantive and pedagogical literature, our experience, and student
opinions.

Introduction

Causal inference is often of interest to researchers. As Pearl (2009, p.97) puts it, “The
questions that motivate most studies in the health, social and behavioural sciences are
not associational but causal in nature.” Causal inference is interdisciplinary, but not
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surprisingly, is understood and practiced differently in different disciplines. Causal
inference has grown in importance in the last few decades; according to Gary King
(blurb on the back cover of Morgan and Winship (2014)), ‘More has been learned
about causal inference in the last few decades than the sum total of everything that
had been learned about it in all prior recorded history’. There has been a boom in the
field of programme evaluation, which builds on causal inference (Abadie and Cattaneo
2018). Policy makers in several countries have explicitly begun relying on evidence-
based research as a strict criterion for policy making. The demand for skills in causal
inference extends to the private sector, (Angrist and Pischke 2017, p. 2): ‘Google
and Netflix post positions flagged keywords like causal inference, experimental design,
and advertising effectiveness; Facebook’s data science team focuses on randomized
controlled trials and causal inference; Amazon offers prospective employees a reduced
form / causal / program evaluation track.’

This demand for causal inference translates into a need for conveying the key ideas
of this area. Causal inference is characterized by some subtle ideas. Since those
encountering the subject for the first time may find it challenging, our paper is about
demystifying causal inference. We suggest ingredients of a recipe, but not a recipe
itself since in different contexts, different instructors and students are likely to use,
be prepared for, or prefer different ingredients of the recipe. With a given amount
of class time, the ingredients need to be balanced. The objective of an introductory
course is to convey the key elements and applications of causal inference, so that it is
enjoyable and intuitive understanding is promoted. We first draw on some scholarship
on the subject of teaching econometrics.

More generally, in econometrics, scholars have reflected on the task of teaching the
subject. In the Preface of their book, Johnston and Dinardo (1996) wrote that the
applied econometrician often suffers from ‘intellectual indigestion’; and this is also
highly likely to be the case with students. Greene and Becker (2001) advocated
greater use of computing technology as opposed to chalk and talk; this was at a time
when computers were increasingly available to students of economics. The paucity of
applications used in instruction made the subject dry and abstract. Since then, access
to data has improved and econometric textbooks usually include many ‘real’ examples.
As pointed out by Verbeek (2012), working with data is not not only interesting, it is
substantively important. He quotes a seminar speaker: ‘Econometrics is much easier
without data.’

Kennedy (2009, p. 487) opened his article on econometric teaching with the follow-
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ing: ‘Contrary to the belief of most econometrics instructors, upon completion of
introductory statistics courses, the vast majority of students do not understand the
basic logic of classical statistics as captured in the sampling-distribution concept.’
He emphasized the importance of teaching the sampling distribution concept and
advocated explaining Monte Carlo studies to students. Craft (2003) and Briand and
Hill (2013) provide specific guidance on using Monte Carlo simulations for teaching.

More recent commentaries on the teaching of econometrics reflect the need to include
causal inference. Angrist and Pischke (2017) commented on econometric instruction.
In their opinion, although empirical economics has changed greatly, econometric
teaching has not. According to them, causal inference needs to be emphasized in
teaching (they use the potential outcomes framework), and interesting applications
should be used. Such methods as regression discontinuity and difference in difference
should get sufficient class time. Angrist and Pischke have written two textbooks
on causal inference. In their 2017 paper, they are generally critical of econometric
textbooks, though they approve of the book by Stock and Watson, ‘which comes closest
to embracing the modern agenda.’ Chen and Pearl (2013) reviewed six econometrics
textbooks by posing what they feel were key questions (for example, ‘Does the author
present example problems that require causal reasoning?’). The textbook by Stock
and Watson also fared well on most of their criteria.

Against this background, we propose some possible ingredients for a recipe for de-
mystifying causal inference. Both the authors of this paper have some experience in
teaching causal inference to those not exposed to it previously, and we draw on our
experience here. We realize that different instructors may want to emphasize different
aspects, and there is a given time constraint in any course.

The ingredients we propose are:

1. Using the potential outcomes framework and causal graphs.

2. Covering applications that use key methods for causal inference: experiments,
regression discontinuity etc.

3. Using monte carlo simulation.

4. Using data graphs.

In a course on causal inference, it is natural to cover the key methods for causal
inference that are currently being used in economics, ingredient 2, and this is also
consistent with the view that real applications with real data should be used in courses.
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Ingredient 1 is optional, but we feel that the potential outcomes framework and causal
graphs help clarify issues, and in the next section we discuss the case for them. Several
authors have advocated ingredient 3 as we have discussed in the introduction. We
discuss the case for ingredient 4 in the next section, but we feel that graphs help
connect the data to models; also, visualizing data is a skill in demand.

The rest of the paper discusses the case for the different ingredients, drawing on
the literature, our own experience, and some opinions solicited from students. We
asked graduate students at two locations for their opinions, one at TERI School of
Advanced Studies, Delhi and the other at the Central European University, Vienna
(CEU). The questions were administered via google forms. The students at CEU were
enrolled in empirical economics courses that extensively reviewed methods such as
Difference-in-Differences, Instrumental Variables and Regression Discontinuity Design.
The students at TERI were studying a more standard econometrics course at the
Master’s Level.

We intersperse the responses from the students within our discussion of the case for
the different ingredients for demystifying causal inference.

The case for the proposed ingredients

In this section we discuss the case for each of the different proposed ingredients, in
turn and in the next section we see how these ingredients combine.

Starting point: causal questions

Before we begin with the ingredients, a starting point is clarifying what causal questions
are (Chen and Pearl 2013). In their excellent text, Stock and Watson (2011, pp. 2 –
4) begin with four questions that economists examine:

1. Does reducing class size improve elementary school education?

2. Is there racial discrimination in the market for home loans?

3. How much do cigarette taxes reduce smoking?

4. What will be the rate of inflation be next year?

They point out that the first three questions are questions that require causal inference.
Hernan, Hsu and Healy (2019) have stressed that it is important to classify data
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science tasks into description, prediction, and causal inference (which can also be
viewed as requiring counterfactual prediction).

Though most students did distinguish between descriptive, causal and predictive
interpretations, several did not (Table 1). Also, among those students who had
been taught a more conventional course (TERI), a higher proportion did not make
the distinction. Since the students at CEU were often exposed to the distinction
between correlation and causation within a regression framework, they may be better
at recognizing the difference (even if only cursorily).

Table 1: When you run a regression, do you distinguish between (1) descriptive, (2)
causal and (3) predictive interpretations?

Number of students
Response TERI CEU
Yes 13 18
No 7 3
Total 21 21

Source: survey of students conducted by us in 2020

Ingredient: potential outcomes and causal graph frameworks

The potential outcomes and causal graph frameworks make causal inference explicit. Is
it important to have an explicit framework for causal inference? Yes, according to Pearl
(2009, p. 100): ‘Another ramification of the sharp distinction between associational
and causal concepts is that any mathematical approach to causal analysis must acquire
new notation for expressing causal relations—probability calculus is insufficient.’

We agree with the sentiment expressed above, and provide a more specific statement
related to experiments. Causal inference is the underlying idea in evidence based policy.
And many consider randomized experiment based inference as the gold standard,
though some disagree. The potential outcomes and causal graph frameworks can help
us unpack randomized experiments, help us see how they work, and how they relate
to studies based on observational data, instead of only asserting that they are the
‘gold standard’.

In an online presentation, the political methodologist Kosuke Imai (2016) wrote: ‘I
have been using potential outcomes in most of my research, but recently I have started
using DAGs. Potential outcomes are useful when thinking about treatment assignment
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mechanism, experiments, quasi-experiments. DAGs are useful when thinking about
the entire causal structure, complex causal relationships. Both are better suited for
causal inference than the standard regression framework.’ Abadie and Catteneo (2018)
use both the potential outcomes framework and causal graphs to explain econometric
methods for program evaluation.

Imbens (2019) has recently discussed the potential outcomes and causal graph frame-
works. His view is that both are complementary, but the potential outcomes framework
is used more in economics. However, he sees expository value for the causal graph
(also called DAGs, directed acyclic graphs) framework. He writes that ‘The DAGs,
like the path analyses that came before them, . . . can be a powerful way of illustrat-
ing key assumptions in causal models. . . . Ultimately some of this is a matter of
taste and some researchers may prefer graphical versions to algebraic versions of the
same assumptions and vice versa.’ Causal graphs, or DAGS, are visual but are also
mathematical objects. They tie in with structural causal models but can be related
to the potential outcomes framework; but they only require modest formal training
(Elwert 2013).

Our own view is that these two frameworks are important components of causal
inference. We now discuss the substantive and pedagogical arguments for using the
frameworks.

Substantive argument for the potential outcomes framework

• The potential outcomes framework is closely associated with the Neyman-Rubin
causal model. It is a core element of causal inference ideas, and connects with
methods of inference. It is useful for understanding the core of causal inference
as well as developments in the subject that build on it.

• The potential outcomes framework can illustrate a simple decomposition of
estimated effects into selection effects and true effects (Angrist and Pischke
2009).

• In the potential outcomes framework, there is a delineation of different types of
treatment effects.

• The potential outcomes framework helps us understand experiments and one of
the inferential methods often used with experiments, randomization inference
(Abadie and Cattaneo 2018)
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• Building on the potential outcomes model, Angrist, Imbens and Rubin (1996)
developed insight into instrumental variables estimation used in experiments
with imperfect compliance.

• Another extension by an econometrician, that of Manski bounds, builds on the
potential outcomes model (see Manski 1995). Manski has pushed the frontier in
terms of highlighting the role of assumptions in causal analysis.

Pedagogical argument for the potential outcomes framework

• The potential outcomes framework can be introduced simply with numbers in a
table (Wikipedia).

• The potential outcomes framework can introduce the idea of a causal effect
simply. Also, along with this, the idea of the counterfactual or the potential
outcome that is not observed can be communicated.

• The idea of randomization inference can also be communicated simply as done
by Rubin (2005) with a simple table of numbers and from first principles.

• Once students internalize the potential outcomes framework, and the idea of a
counterfactual, it is easier to communicate the logic of experiments, regression
discontinuity and difference-in-difference. In experiments we use randomization
and the control group to fill in the missing potential outcome. In difference-in-
difference, we use the ‘if the treatment group had not got the treatment it would
have changed like the control group’ assumption to fill in the potential outcome.

• Useful pedagogical resources for the potential outcomes framework are: Rosen-
baum’s beautifully written book Observation and Experiment, Rubin’s course
notes (2005), the chapter on experiments in Angrist and Pischke (2015), the
Wikipedia entry on the Rubin Causal Model.

Substantive argument for causal graphs

• Causal graphs, or more formally, causal directed acyclic graphs, are part of the
structural causal model that is used by many practitioners of causal inference.
Abadie and Cattaneo (2018) use it in their discussion.

• Causal graphs help make causal assumptions explicit.

• The literature using causal graphs clarified the issue of which covariates one
should adjust for (Pearl and Mackenzie 2019). With a given causal graph
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we can see which sets of covariates need to be adjusted for or not, given our
interest in specific causal effects. Causal graphs are visual but there is a rigorous
mathematical machinery underpinning them.

• A key contribution of causal graphs to causal inference thinking was the idea
of collider bias where covariate adjustment was harmful. Elwert and Winship
(2014) is a detailed explanation of the phenomenon with its applications.

• Causal graphs can be used to understand instrumental variables (see Abadie
and Cattaneo 2018). Morgan and Winship (2015) use causal graphs to discuss
valid instrumental variables and the tests for their validity. The same authors
use causal graphs to discuss the charge that instrumental variables estimation
may result in insufficiently deep explanations.

Pedagogical argument for causal graphs

• Causal graphs are intuitive, and reflect how we think of relationships. Applied
researchers often use figures that are like causal graphs, with variables connected
by arrows to convey their thinking (see, for example, Rodrik, Subramanian and
Trebbi 2004).

• Causal graphs can be used both informally and more formally, as part of
structural causal models. Their use can be adjusted to the audience.

• Since causal graphs are part of structural causal models, they represent equations,
and can be useful along with simulation exercises. These can supplement
traditional derivation based classes, where the key points of the derivation are
highlighted while simulations with causal graphs provide intuition.

• We often say that measurement error or omitted variables are sources of ‘endo-
geneity’. Left at that, it can be a bit mysterious. However, causal graphs are
more specific in intuitively delineating possible data generating processes that
lead to measurement error and omitted variables.

• Causal graphs are widely used in epidemiological pedagogy and practice.

• Useful pedagogical resources for causal graphs are the superbly written article
by Elwert (2013), the Book of Why by Pearl and Mackenzie (2019). For causal
graphs, two non-econometrics books that provide excellent introductory treat-
ments are Shipley (2000) and Kaplan (2009), and both use causal graphs along
with simulation. The brief introduction to the chapter on causal inference in
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Dayal (2020), draws on the potential outcomes and causal graph frameworks.

Student opinions

Table 2 shows that students are unlikely to hear about the Rubin causal model by
themselves (among TERI students who took a usual type of econometric class, only
2 out of 21 had heard about the Rubin causal model). Students at CEU are more
familiar with the discussion of potential outcomes as it was fleetingly discussed in the
course (and were assigned to read the introductory chapter in Angrist and Pischke
(2015)).

Table 2: Have you heard of / read about the potential outcomes (also called counter-
factual or Neyman-Rubin) approach?

Number of students
Response TERI CEU
Yes 2 12
No 19 9
Total 21 21

Source: survey of students conducted by us in 2020

The proportion of students who had read anything using causal graphs was very
similar in both places, and they were in a minority (Table 3). Anand Murugesan uses
causal graphs informally, i.e. diagrams/one-sided or two-sided arrows in one of his
courses to illustrate relationships among dependent, independent, endogenous and
exogenous variables.

Table 3: Have you read anything using causal graphs (also called directed acyclic
graphs) or path diagrams?

Number of students
Response TERI CEU
Yes 6 7
No 15 14
Total 21 21

Source: survey of students conducted by us in 2020

Most students find econometrics somewhat mysterious and puzzling (Table 4). Whether
they would find the potential outcomes and causal graphs approaches also somewhat

9



mysterious and puzzling is something we cannot say anything definite about, though
we would hope that it helps clarify the nature of causal inference.

Table 4: Do you find econometrics mysterious...?
Number of students

Response TERI CEU
Very mysterious / puzzling 1 4
Somewhat mysterious / puzzling 15 14
Not mysterious / puzzling at all 5 3
Total 21 21

Source: survey of students conducted by us in 2020

Most students find econometric discussions of exogenous explanatory variables some-
what mysterious in TERI though a substantial proportion are not mystified or puzzled
by it (Table 5). At CEU, 4 out of 21 are very puzzled by such discussions. In our
opinion, the potential outcomes and causal graph frameworks, help make the ideas of
causal inference more explicit in comparison with discussions of exogenous explanatory
variables typically found in textbooks.

Table 5: Do you find econometric discussions of exogenous explanatory variables...
(E(u | X) = 0, in a regression of y on the vector of explanatory variables X)

Number of students
Response TERI CEU
Very mysterious / puzzling 0 4
Somewhat mysterious / puzzling 13 7
Not mysterious / puzzling at all 8 10
Total 21 21

Source: survey of students conducted by us in 2020

Ingredient: Covering applications that use key methods for
causal inference

Substantive reasons to teach key causal inference methods

There has been an ‘exponential growth in economists use of quasi-experimental
methods and randomized trials’ (Angrist and Pischke 2017, p.2). Angrist and Pischke
(2017) lament the ‘failure to discuss modern empirical tools’ by most econometric
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textbooks that they surveyed. Others disagree with them, it is only fair to mention
one contrary view, by Diebold of their earlier similar but more technical book, ‘It’s a
novel treatment of that sub-sub-sub-area of applied econometrics, but pretending to
be anything more is most definitely harmful, particularly to students, who have no
way to recognize the charade as a charade.’

Pedagogical considerations in teaching key causal inference methods

• As we stated in the introduction, Becker and Greene (2001) recommended that
applications be used in teaching econometrics.

• Angrist and Pischke (2015) cover what they consider the "Furious Five": random
assignment, regression, instrumental variables, regression discontinuity, and
difference-in-differences. Their book provides good introductory, example-based
explanations of regression discontinuity and difference-in-differences.

• Textbooks are changing to meet courses targeting causal inference specifically,
and more of the most used causal inference methods are appearing along with
standard coverage. Stock and Watson (2011) have a chapter on experiments
and quasi-experiments, and also a chapter on causal inference with time series.
Bailey (2017) and the fifth edition of Hill et al. (2018) cover the "Furious Five";
and Imai’s (2017) book on Quantitative Social Science covers four of the "Furious
Five". Dayal (2020) covers these techniques, discussing relevant R packages and
code, and in some cases drawing on examples in Angrist and Pischke (2015) and
other leading texts, along with some papers, for which data are easily available.

Student opinions

In CEU, compared to TERI, a far larger proportion of students (18 out of 21) had
studied an experiment (and regression discontinuity) as it was discussed extensively
in the course (Table 6). In today’s context we believe that it is vital to have studied
experiments.

Source: survey of students conducted by us in 2020

The regression discontinuity experience is similar to that for experiments (Table 7).

Source: survey of students conducted by us in 2020
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Table 6: Have you studied any specific experimental (RCT) study, or analysed
experimental data?

Number of students
Response TERI CEU
Yes 10 18
No 11 3
Total 21 21

Table 7: Are you familiar with the regression discontinuity method?
Number of students

Response TERI CEU
Yes 3 18
No 18 3
Total 21 21

Ingredient: Using monte carlo simulation

Substantive reasons

• Classical statistics is about the sampling distribution, both when we estimate,
and when we test. We quote Kennedy (2003, pp. 419 – 420): ‘Using β∗ to
produce an estimate of β can be conceptualized as the econometrician shutting
his or her eyes and obtaining an estimate of β by reaching blindly into the
sampling distribution of β∗ to obtain a single number. ... Hypothesis testing
is undertaken by seeing if the value of a test statistic is unusual relative to
the sampling distribution of that test statistic calculated assuming the null
hypothesis is true.’

• Permutation or randomization tests are frequently used for statistical inference,
especially with experiments (Gerber and Green 2012, Abadie and Cattaneo
2018).

• In applied work, researchers have to ponder the use of several possible alternative
estimation methods. Monte carlo simulation is often used to compare different
methods. For example, O’Neill et al. (2016) consider three alternatives to
difference-in-differences estimation (synthetic control, lagged dependent variable,
and matching on past outcomes). They write (p.1), ‘We conduct the first Monte
Carlo simulation study to contrast the relative performance of DiD compared to
these alternative approaches. We consider scenarios where the parallel trends
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assumption does, and does not hold. The simulation results show that DiD
performs best under parallel trends, and when the parallel trends assumption is
violated, the LDV approach reports the least biased, most efficient estimates.’
While theory can tell us what the key assumption is, the Monte Carlo method
can provide us with a sense of the relative performance of different estimators,
given the input on different possible synthetic data generating processes.

• Deaton and Cartwright’s (2018) well known paper titled ‘Understanding and
misunderstanding randomized controlled trials’ uses Monte Carlo simulation to
support one of its arguments.

Pedagogical considerations

• We once again quote Kennedy (2003, p.34), who made the case eloquently,
‘understanding Monte Carlo studies is one of the most important elements of
studying econometrics, not because a student may need actually to do a Monte
Carlo study, but because an understanding of Monte Carlo studies guarantees an
understanding of the concept of a sampling distribution and the uses to which
it is put.’ Carsey and Harden’s (2014) text on Monte Carlo Simulation and
Resampling Methods for Social Science is motivated by the idea that ‘If you
really want students to understand the properties of a model or the model’s
underlying assumptions, make them simulate a sample of data that has those
properties.’

• Large-sample properties figure centrally in modern econometrics. This is where
Monte Carlo simulation shines in providing an intuitive understanding. Four
key econometrics texts that instructors may use in an introductory course
in causal inference present simulation results, in varying degrees. Stock and
Watson (2011, p. 47) present simulation results in a section titled ‘Large-Sample
Approximations to Sampling Distributions.’ Angrist and Pischke (2015, p. 39)
present simulation results in a section titled ‘The t-statistic and the Central Limit
Theorem.’ Imai (2017) uses simulation for illustrating probability, confidence
intervals and hypothesis tests. Hill, Griffiths and Lim (2018) have a number of
Monte Carlo exercises presented in appendices, for example one on instrumental
variables.

• It is possible to use Monte Carlo simulation to demonstrate from first principles
randomization inference in the case of experiments. It is also possible to use sta-
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tistical simulation with DAGS or causal graphs. Causal graphs are accompanied
by structural equations, so we can use a synthetic data generating process that
is consistent with the causal graph. We can thus verify the insights that are
intuitively suggested by causal graphs, and have been mathematically verified
by the formal, mathematical work on causal graphs.

• Instructors can opt to highlight key points of mathematical derivations, and let
students use Monte Carlo simulations. Students could use already programmed
functions, simply playing with the inputs to the functions and seeing what
happens, or write their own functions.

• Gerber and Green’s (2012) excellent book on Field Experiments relies on statisti-
cal simulation for hypothesis intervals and confidence intervals, which, they feel,
makes the presentation more systematic and concise. Kaplan (2009) touches
upon several of the concepts discussed in this section, including sampling distri-
butions, randomization inference, and simulations used along with causal graphs.
Dayal (2020)‘s chapter on causal inference uses simulation extensively while
discussing causal inference.

Student opinions

A minority of students had heard of Monte Carlo simulation in TERI and CEU (Table
7) and very few had done Monte Carlo simulation (Table 8). Simulation requires some
time set aside, a fixed cost.

Table 8: Have you ever yourself done a statistical (Monte Carlo) simulation?
Number of students

Response TERI CEU
Yes 0 4
No 20 17
Total 21 21

Source: survey of students conducted by us in 2020

Ingredient: Using data graphs

Substantive considerations

• The statistician and polymath John Tukey (1962, p. 49) advocated the use of
graphs of data: ‘The simple graph has brought more information to the data
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analyst’s mind than any other device.’ Being able to graph data is a key skill
today, and often can be used in illuminating descriptions. Software like Stata
and R, make it possible to make high quality graphs easily, though this too is a
skill that needs to be developed.

• Rosenbaum (2010) uses boxplots to compare different groups through the entire
book. He discusses the case of uncommon but dramatic effects in a separate
chapter, i.e. where most subjects are not much affected by treatment, but a
small fraction, are strongly affected. His starting point for the discussion is a
boxplot of the observed differences in outcomes in paired subjects. Conventional
statistical methods are geared to detecting typical treatment effects, but not
dramatic effects for a few subjects. Chattopadhyay and Duflo (2004) conducted
an experimental study of the effect of reserving positions of leadership in Village
Councils in India on the kinds of projects undertaken by them. A subset of their
data is presented in Dayal (2020) and boxplots show that a few of the treated
villages had very high levels of water projects. Had we not seen the boxplots,
we would have missed this feature in the sample.

• Data graphs play a role in making an analysis transparent, but as with statistical
analysis in general, some skepticism is useful. Lee and Lemieux (2010) write: ‘It
has become standard to summarize RD analyses with a simple graph showing
the relationship between the outcome and assignment variables. This has several
advantages. The presentation of the “raw data” enhances the transparency of
the research design. A graph can also give the reader a sense of whether the
“jump” in the outcome variable at the cutoff is unusually large compared to the
bumps in the regression curve away from the cutoff. . . . The problem with
graphical presentations, however, is that there is some room for the researcher
to construct graphs making it seem as though there are effects when there are
none, or hiding effects that truly exist.’

• Data graphs can help connect data to models, and thus, reveal problems in causal
inference. Gelman (2013) discussed a paper by Chen et al. (2013) in which
they based causal inference about the effect of air pollution on life expectancy
in China on a regression discontinuity study, on his much read blog: ‘Here’s
the key figure from the paper ... This is a beautiful graph. I love love love
a plot that shows the model and the data together. One thing I like about
this particular graph is that, just looking at it, you can see how odd the model
is. Or, at least, how odd it looks to an outsider. A third-degree polynomial
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indeed!’ Later, Gelman (2018) wrote: ‘The most obvious problem revealed by
this graph is that the estimated effect at the discontinuity is entirely the result
of the weird curving polynomial regression, which in turn is being driven by
points on the edge of the dataset.’

Pedagogical considerations

From an expository perspective, data graphs can help make the subject less abstract.
Stock and Watson (2011) and Bailey (2017) use scatterplots very effectively while
introducing regression with panel data. Angrist and Pischke (2009) provide graphs
in two different studies where the common trends assumption was consistent and
inconsistent with past data. Gelman and Hill (2007), whose text includes chapters on
causal inference, use graphs skilfully throughout, and have a very good appendix on
statistical graphics. Dayal (2020) uses data graphs extensively. An example is his use
of data graphs to provide a simplified step-by-step exposition of Manski and Pepper
(2018), which uses Manski Bounds.

Student opinions

Very few students did not like data graphs (Table 9).

Coming to student opinions, relevant here, they are as follows:

Table 9: Do you like making graphs of data?
Number of students

Response TERI CEU
Like a lot 12 5
Ok with graphs 9 15
Don’t like 0 1
Total 21 21

Source: survey of students conducted by us in 2020

Most students at TERI and CEU thought that graphs of data are helpful in data
analysis, for communication, and substantively (Table 10).

Source: survey of students conducted by us in 2020
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Table 10: Do you think graphs of data help?
Number of students

Response TERI CEU
Communicate the results of data analysis? 2 4
Can be substantive tools that help analysis? 1 1
Both of the above 18 17
Total 21 21

Synergy of the ingredients and illustrations

Finally, we point out that there is a synergy between the ingredients. We provide
specific illustrations of our use of the ingredients, drawing on the chapter on causal
inference in Dayal (2020).

First illustration: Anchoring experiment

Ingredients used in this case: a causal inference method with real data, data graphs,
simulation-based inference.

In this example we use Kahneman’s (2011) well known anchoring experiment, that is
conducted in class. This has a number of advantages in the context of such a course:

• It is a key idea of a Nobel Laureate in economics.

• It provides a feel for how the data of an experiment are generated.

• It illustrates how in a different setting the results may change (the issue of
external validity).

• It is a simple example, easy to comprehend.

• It can be used to illustrate the use of randomization inference, both illustrating
the use of computation in inference, and illustrating the randomization inference
distribution.

The specific questions that students are asked are:

• We chose (by computer) a random number between 0 and 100.

• The number selected and assigned to you is X = . . . .

• Do you think the percentage of countries, among all those in the United Nations,
that are in Africa is higher or lower than in X? . . . .
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• Give your best estimate of the percentage of countries, among all those in the
United Nations, that are in Africa . . . .

Once the data are collected, it can be analysed.

IES TERI

0 20 40 60 0 20 40 60

High_65

Low_10

African

P
ro

m
pt

Figure 1: Boxplots comparing IES and TERI classes, best estimate of countries in
Africa, anchoring experiment

Figure 1 shows a data graph, with the boxplots giving us a visual comparison. The
graphs show us comparisons across two samples, two classes (IES and TERI), and
within each, the comparison between treatment and control. The graph also shows
that in different settings an experiment can give somewhat different results, although
in both there is an anchoring effect.

The ri2 package is used for randomization inference; Figures 2 and 3 show the
randomization inference for the samples.
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Figure 2: Randomization inference for IES
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Figure 3: Randomization inference for TERI

Second illustration: regression discontinuity

Ingredients used: statistical simulation, data graphs, illustrating a causal inference
method with real data.

In order to explain regression discontinuity, which can be intriguing, we believe it is
useful to do a simple simulation, generate artificial data, and then estimate the true
causal effect.

The synthetic data generating process broadly, is:

• The running variable, run, is drawn from a uniform distribution

• The treatment variable is 0 if run < 20, else it is 1.

• The outcome variable = 10 treat – 0.4 run + noise.

Figure 4 shows the synthetically generated data. We see that there is a clear jump
equal to the effect of the treatment at the cutoff point.

We then use real data in an example drawn from Angrist and Pischke (2015), about
the Minimum Legal Drinking Age (MLDA). The r package rddtools is not only good
for regression discontinuity analysis, it also produces graphs that help demystify. The
package can be used for both parametric and non-parametric analysis. Below you can
see the graph (Figure 5) accompanying the non-parametric analysis.

We can also illustrate the use of placebo tests visually (Figure 6). In a regression
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discontinuity we should get an effect only at the cutpoint. Away from the cutpoint,
the estimate should be zero. The placebo test tests whether this is zero. We think the
following visual of the placebo test (Figure 6) is neat, confirming that we get an effect
only at the cutpoint:
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Figure 6: Placebo test

Similarly, the package does a sensitivity check with respect to the bandwidth used
and can produce a plot (Figure 7).
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Figure 7: Sensitivity test

Third illustration: graphical approach to difference-in-
difference

Ingredients used: method for causal inference illustrated with real data, crucial use of
data graph, and application of the concept of potential outcomes

The difference-in-difference method is easy to use for answering policy questions; a
key assumption is the parallel slopes assumption.
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Manski and Pepper (2018) examined the effect of right to carry laws on crime. The
state of Virginia allowed guns to be carried in 1989, while Maryland did not do so.
Can a typical difference-in-difference analysis be used? However, in the following
figure on murder rates in Virginia and Maryland, the parallel slopes assumption does
not hold.
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Figure 8: Murder rates in Virginia (solid line) and Maryland (dashed line). Virginia
enacted a right to carry statute in 1989 (vertical dotted line).

The analysis by Manski and Pepper (2018) also brings home a practical application of
the potential outcomes framework. Since the parallel slopes assumption fails, they
use alternate assumptions and on that basis provide bounded estimates. Manski
and Pepper’s analysis can overwhelm initially because of the different approach, but
through a careful step-by-step explanation that uses graphs like Figure 8, the simpler
parts of their rich paper can be communicated.

Fourth illustration: instrumental variables

Ingredients used: causal graphs, simulation, data graphs

While presenting instrumental variables, we find it useful to introduce instrumental
variables via a very simple example, using causal graphs. Abadie and Cattaneo 2018)
use a similar causal graph in the beginning of their section on instrumental variables.

Consider a causal graph (part of a structural causal model as in Pearl et al. 2016) of
four variables, U, Z, X and Y (Figure 9). We are interested in the causal effect of X
on Y.

The individual causal links are:

• U causes X
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Figure 9: Causal graph

• U causes Y

• Z causes X

• X causes Y

The structural equations (we assume linear relationships) for the causal graph are:

X = γ0 + γZZ + γUU + errorX

Y = β0 + βXX + βUU + errorY .

We generate data according to the structural equations above, assuming numerical
values for the parameters.

We now run the following regressions:

• Regress Y on X only, get coefficient of X, OLS1

• Regress Y on X and U, get coefficient of X, OLS2.

• Regress Y on X, using instrumental variables, with Z as and instrumental
variable, and get coefficient of X, IV.

How do OLS1, OLS2 and IV relate to βX , the structural equation parameter, or the
“true” effect of X on Y? We generate data repeatedly and then repeatedly estimate
OLS1, OLS2 and IV. We are then able to compare the sampling distributions of OLS1,
OLS2 and IV.

We create a function in R, which allows us to carry out data generation and estimation
repeatedly. A part of the R code is as follows:

sample_size = 300

coef_Z = 0.9

Z <- runif(sample_size, min = 1, max = 5) # generating Z

U <- runif(sample_size, min = 1, max = 5) # generating U
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X <- U + rnorm(sample_size) + coef_Z *Z # generating X

Y <- U + X + rnorm(sample_size) # generating Y

OLS1 <- lm(Y ~ X)

OLS2 <- lm(Y ~ X + U)

IV <- ivreg(Y ~ X | Z)

Figure 10 displays the results; the true effect is 1. OLS2, which controls for U, is
unbiased, but of course it requires knowledge of U. OLS1 is biased, but may have a
smaller spread than IV, which uses the instrument Z. IV is consistent.
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Figure 10: Simulation results. Sampling distributions of estimators. True effect of
X on Y is 1. IV uses Z as instrument, OLS1 is Y regressed only on X, OLS2 is Y
regressed on X and U

This helps illustrate:

• Both omitted variable bias and the use of instrumental variables.

• Instrumental variable estimates even with a good instrumental variable are
consistent, but have a larger variance.

Conclusion

With developments in causal inference and computing we feel it is possible to convey
the essence of this subject and promote active learning using the ingredients we have
suggested. Different instructors can tailor the course differently depending on their
students and emphasize different ingredients.
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